用Python開始機器學習(8:SVM支持向量機)-2

測試2:影評態度

SVM在康奈爾影評數據集上的表現:

代碼:

#-*-coding:utf-8-*-

fromsklearnimportsvm

importnumpyasnp

importscipyassp

fromsklearn.cross_validationimporttrain_test_split

importmatplotlib.pyplotasplt

fromsklearn.datasetsimportload_files

fromsklearn.feature_extraction.textimportTfidfVectorizer

movie_reviews = load_files(u'E:/ML/DATA/電影分類數據/tokens')

#讀取

movie_data = sp.load('movie_data.npy')

movie_target= sp.load('movie_target.npy')

x = movie_data

y =movie_target

count_vec = TfidfVectorizer(binary=False,decode_error='ignore',stop_words='english')

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2)

x_train = count_vec.fit_transform(x_train)#矩陣坐標,TF-IDF權值

x_test = count_vec.transform(x_test)

clf_linear = svm.SVC(kernel='linear').fit(x_train,y_train)

clf_poly = svm.SVC(kernel='poly',degree=3).fit(x_train,y_train)

clf_rbf = svm.SVC().fit(x_train,y_train)

clf_sigmoid = svm.SVC(kernel='sigmoid').fit(x_train,y_train)

fori,clfinenumerate( (clf_linear, clf_poly, clf_rbf, clf_sigmoid)):

printclf

answer = clf.predict(x_test)

#print answer

#print y_test

print(np.mean( answer == y_test ))

==================================================

D:\Anaconda2\python.exe D:/PyCharm/start/ML/SVM/SVM2_MOVIE.py

clf_linear:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='linear',

max_iter=-1, probability=False, random_state=None, shrinking=True,

tol=0.001, verbose=False)

[1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0

1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1

1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0

1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1

1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1

0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1

1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1

1 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1]

[1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0

1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1

1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0

1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0

1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1

0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0

1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1]

0.832142857143

clf_poly:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='poly',

max_iter=-1, probability=False, random_state=None, shrinking=True,

tol=0.001, verbose=False)

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

[1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0

1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1

1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0

1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0

1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1

0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0

1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1]

0.460714285714

clf_rbf:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',

max_iter=-1, probability=False, random_state=None, shrinking=True,

tol=0.001, verbose=False)

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

[1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0

1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1

1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0

1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0

1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1

0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0

1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1]

0.460714285714

clf_sigmoid:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='sigmoid',

max_iter=-1, probability=False, random_state=None, shrinking=True,

tol=0.001, verbose=False)

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

[1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0

1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1

1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0

1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0

1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1

0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0

1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1]

0.460714285714

Process finished with exit code 0

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,646評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,595評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,560評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,035評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,814評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,224評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,301評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,444評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,988評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,804評論 3 355
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,998評論 1 370
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,544評論 5 360
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,237評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,665評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,927評論 1 287
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,706評論 3 393
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,993評論 2 374

推薦閱讀更多精彩內容