數(shù)據(jù)挖掘

基礎(chǔ)篇:

  1. 讀書《Introduction to Data Mining》,這本書很淺顯易懂,沒有復(fù)雜高深的公式,很合適入門的人。另外可以用這本書做參考《Data Mining : Concepts and Techniques》。第二本比較厚,也多了一些數(shù)據(jù)倉庫方面的知識(shí)。如果對(duì)算法比較喜歡,可以再閱讀《Introduction to Machine Learning》。
  2. 實(shí)現(xiàn)經(jīng)典算法。有幾個(gè)部分:a. 關(guān)聯(lián)規(guī)則挖掘 (Apriori, FPTree, etc.)b. 分類 (C4.5, KNN, Logistic Regression, SVM, etc.)c. 聚類 (Kmeans, DBScan, Spectral Clustering, etc.)d. 降維 (PCA, LDA, etc.)e. 推薦系統(tǒng) (基于內(nèi)容的推薦,協(xié)同過濾,如矩陣分解等)然后在公開數(shù)據(jù)集上測(cè)試,看實(shí)現(xiàn)的效果。可以在下面的網(wǎng)站找到大量的公開數(shù)據(jù)集:http://archive.ics.uci.edu/ml/
  3. 熟悉幾個(gè)開源的工具: Weka (用于上手); LibSVM, scikit-learn, Shogun4. 到 https://www.kaggle.com/ 上參加幾個(gè)101的比賽,學(xué)會(huì)如何將一個(gè)問題抽象成模型,并從原始數(shù)據(jù)中構(gòu)建有效的特征 (Feature Engineering). 到這一步的話基本幾個(gè)國內(nèi)的大公司都會(huì)給你面試的機(jī)會(huì)。
    進(jìn)階篇:
  4. 讀書,下面幾部都是大部頭,但學(xué)完進(jìn)步非常大。a.《Pattern Recognition and Machine Learning》b.《The Elements of Statistical Learning》c.《Machine Learning: A Probabilistic Perspective》第一本比較偏Bayesian;第二本比較偏Frequentist;第三本在兩者之間,但我覺得跟第一本差不多,不過加了不少新內(nèi)容。當(dāng)然除了這幾本大而全的,還有很多介紹不同領(lǐng)域的書,例如《Boosting Foundations and Algorithms》,《Probabilistic Graphical Models Principles and Techniques》;以及理論一些的《Foundations of Machine Learning》,《Optimization for Machine Learning》等等。這些書的課后習(xí)題也非常有用,做了才會(huì)在自己寫Paper的時(shí)候推公式。2. 讀論文。包括幾個(gè)相關(guān)會(huì)議:KDD,ICML,NIPS,IJCAI,AAAI,WWW,SIGIR,ICDM;以及幾個(gè)相關(guān)的期刊:TKDD,TKDE,JMLR,PAMI等。跟蹤新技術(shù)跟新的熱點(diǎn)問題。當(dāng)然,如果做相關(guān)research,這一步是必須的。例如我們組的風(fēng)格就是上半年讀Paper,暑假找問題,秋天做實(shí)驗(yàn),春節(jié)左右寫/投論文。3. 跟蹤熱點(diǎn)問題。例如最近幾年的Recommendation System,Social Network,Behavior Targeting等等,很多公司的業(yè)務(wù)都會(huì)涉及這些方面。以及一些熱點(diǎn)技術(shù),例如現(xiàn)在很火的Deep Learning。4. 學(xué)習(xí)大規(guī)模并行計(jì)算的技術(shù),例如MapReduce、MPI,GPU Computing。基本每個(gè)大公司都會(huì)用到這些技術(shù),因?yàn)楝F(xiàn)實(shí)的數(shù)據(jù)量非常大,基本都是在計(jì)算集群上實(shí)現(xiàn)的。5. 參加實(shí)際的數(shù)據(jù)挖掘的競(jìng)賽,例如KDDCUP,或 https://www.kaggle.com/ 上面的競(jìng)賽。這個(gè)過程會(huì)訓(xùn)練你如何在一個(gè)短的時(shí)間內(nèi)解決一個(gè)實(shí)際的問題,并熟悉整個(gè)數(shù)據(jù)挖掘項(xiàng)目的全過程。6. 參與一個(gè)開源項(xiàng)目,如上面提到的Shogun或scikit-learn還有Apache的Mahout,或?yàn)橐恍┝餍兴惴ㄌ峁└佑行Э焖俚膶?shí)現(xiàn),例如實(shí)現(xiàn)一個(gè)Map/Reduce平臺(tái)下的SVM。這也是鍛煉Coding的能力。
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,983評(píng)論 6 537
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,772評(píng)論 3 422
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,947評(píng)論 0 381
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,201評(píng)論 1 315
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,960評(píng)論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,350評(píng)論 1 324
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,406評(píng)論 3 444
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,549評(píng)論 0 289
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,104評(píng)論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,914評(píng)論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,089評(píng)論 1 371
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,647評(píng)論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,340評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,753評(píng)論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,007評(píng)論 1 289
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,834評(píng)論 3 395
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 48,106評(píng)論 2 375

推薦閱讀更多精彩內(nèi)容