菜鳥筆記Python3——機器學習(二) 手動搭建邏輯回歸算法

參考資料

<PYTHON_MACHINE_LEARNING> chapter3
Maximum margin classifcation with
support vector machines

引言

在上一章邏輯回歸算法中,我們已經注意到,邏輯回歸 LogisticalRegression線性自適應 Adaline 的區別只在于它們對應的激勵函數不同,所以這一章,我們試著自己來構建一個簡單的邏輯回歸單元

step 1 結構分析

參考感知機單元,我們構建的這個邏輯回歸類 應該接受一組訓練集,包括一個 nk*的矩陣以及一個n維的列向量 y
這個類應該包括一個求 net_input 的方法來求出 z


一個更新權值并統計損失函數的方法
一個分類器
注意,這個分類器應該以0.5作為閾值

step 2 直接在Adaline的基礎上修改代碼

# -*- coding: utf-8 -*-
"""
Created on Fri Jun 30 12:57:19 2017

@author: Administrator
"""

import numpy as np
class LogisticalRegression(object):
    """
    LogisticalRegression lassifier.
    Parameters(參數)
    ------------
    eta : float
    Learning rate (between 0.0 and 1.0) 學習效率
    n_iter : int
    Passes over the training dataset(數據集).
    Attributes(屬性)
    -----------
    w_ : 1d-array
    Weights after fitting.
    errors_ : list
    Number of misclassifications in every epoch(時間起點).
    """

    def __init__(self, eta=0.01, n_iter=10, C=1.0):
        self.eta = eta
        self.n_iter = n_iter
        self.C = C
    def fit(self, X, y):
        '''
    Fit training data.
    Parameters
    ----------
    X : {array-like}, shape = [n_samples, n_features] X的形式是列表的列表
    Training vectors, where n_samples is the number of samples
    and n_features is the number of features.
    y : array-like, shape = [n_samples]
    Target values.
    Returns
    -------
    self : object
'''
        self.w_ = np.zeros(1 + X.shape[1])
        #X.shape = (100,2),zeros 生成的是列向量
        #self.w_ 是一個(3,1)的矩陣
        # print('X.shape[1]=',X.shape[1])
        self.cost_ =[]
        #self.cost_損失函數 cost_function
        # zeros()創建了一個 長度為 1+X.shape[1] = 1+n_features 的 0數組
        # self.w_ 權向量
        self.errors_ = []
        for i in range(self.n_iter):
            output = self.activation(X)
            '''
            if i==1:
                print(output)
                print(y)
            '''
            # y(100,1) output(100,1),errors(100,1)
            errors = (y - output)

            self.w_[1:] += self.C*self.eta * X.T.dot(errors)
            #   X先取轉置(2,100),再矩陣乘法乘以 errors(100,1) X.T.dot(errors) (2,1)
            self.w_[0] += self.C*self.eta * errors.sum()
            cost = (errors**2).sum()
            self.cost_.append(cost)
            '''
            ln_output=np.log(output)
            
            cost = y.dot(ln_output)+(1-y).dot(np.log(1-output))
            self.cost_.append(cost) 
            print(self.cost_)
            '''
        # print(self.w_.shape)
        # print(self.w_)
        # print(X.shape)
        return self

    def net_input(self, X):
        """Calculate net input"""
        #np.dot(A,B)表示矩陣乘法 ,X(100,2) self.w_[1:](2,1)
        #注意 這里每一組 向量x = [x1,x2] 不是 [x1,,,,,,x100]!!!
        #所以得到的 net_input 是(100,1)的矩陣 表示100個樣本的net_input
        return (np.dot(X, self.w_[1:])+self.w_[0])

    def activation(self,X):
        """Compute LR activation"""

        return 1/(1+np.exp(-self.net_input(X)))

    def predict(self, X):
        """return class label after unit step"""
        print(self.cost_)
        return np.where(self.activation(X)>= 0.5, 1, 0)

同樣用 Iris 數據集來測試一下下~

# -*- coding: utf-8 -*-
"""
Created on Fri Jun 30 14:47:25 2017

@author: Administrator
"""

from LR import LogisticalRegression
from sklearn import datasets
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from PDC import plot_decision_regions
import matplotlib.pyplot as plt
import numpy as np
Iris = datasets.load_iris()
x = Iris.data[0:100,2:4]
y = Iris.target[0:100]
X_train,X_test,y_train,y_test = train_test_split(
        x,y,test_size=0.3,random_state=0)
sc=StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
Lr=LogisticalRegression(n_iter=20,eta=0.01,C=10)
Lr.fit(X_train_std,y_train)
X_combined_std = np.vstack((X_train_std,X_test_std))
y_combined = np.hstack((y_train,y_test))

plot_decision_regions(X=X_combined_std,y=y_combined,
                      classifier=Lr,test_idx=range(70,100)
                      )
'''
plt.scatter(X_test_std[:,0],X_test_std[:,1],c='',edgecolor='0',alpha=1.0,
            linewidths=1,marker='o',s=55,label='test')
'''
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')

plt.savefig('Iris.png')
plt.show()

結果如下


ok!

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,763評論 6 539
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,238評論 3 428
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,823評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,604評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,339評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,713評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,712評論 3 445
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,893評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,448評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,201評論 3 357
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,397評論 1 372
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,944評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,631評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,033評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,321評論 1 293
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,128評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,347評論 2 377

推薦閱讀更多精彩內容