計(jì)算幾何初步

一、叉積
叉積的計(jì)算是線段方法的核心。對(duì)于向來p1和p2,叉積是由點(diǎn)(0,0)、p1、p2和p1+p2構(gòu)成的平行四邊形的有向面積。另一種與之等價(jià)但更有效的的叉積定義方式是將其看做矩陣行列式:
p1×p2 = x1y2 - x2y1 = - p2×p1
若p1×p2為正,則相對(duì)于原點(diǎn)(0,0)來說,p1位于p2順時(shí)針方向;若p1×p2為負(fù),p1位于p2逆時(shí)針方向;若為0則方向相同,或相反。

若是相對(duì)于點(diǎn)p0(x0,y0)而非原點(diǎn),則p0p1p0p2的叉積為(p1-p0)×(p2-p0) = (x1-x0)(y2-y0)-(x2-x0)(y1-y0)。

確定連續(xù)線段是向左轉(zhuǎn)還是向右轉(zhuǎn)
對(duì)于線段p0p1和p1p2,采用叉積可以避免計(jì)算角度,只需簡(jiǎn)單的計(jì)算一下p0p2是位于p0p1的順時(shí)針還是逆時(shí)針方向。計(jì)算叉積****
(p2-p0)×(p1-p0) = (x2-x0)(y1-y0) - (x1-x0)(y2-y0)
若結(jié)果為負(fù),p0p2p0p1的逆時(shí)針方向,在p1處左轉(zhuǎn);結(jié)果為正則右轉(zhuǎn);為0表示三點(diǎn)共線。

判斷兩條線段是否相交
要判斷兩條線段是否相交,則需要檢查每條線段是否跨越了另一條線段的直線。如果點(diǎn)p1位于某直線的一邊,而點(diǎn)p2位于該直線的另一邊,則稱p1p2跨越了這條直線。兩條線段相交,當(dāng)且僅當(dāng)下面兩個(gè)條件至少成立一個(gè):****
每條線段都跨越了包含另一條線段的直線

一條線段的一個(gè)端點(diǎn)落在另一條線段上

二、確定任意一對(duì)線段是否相交
給定一個(gè)線段的集合,僅僅判斷是否有兩個(gè)線段相交,不必輸出所有相交的線段對(duì)。此處我們假設(shè),線段均不垂直。

我們使用“掃除”算法來解決這個(gè)問題。在掃除過程中,一條假想的掃除線穿過一個(gè)給定的幾何物體集合,會(huì)與集合中的部分線段相交。下圖中掃除線r與線段a、c相交,且與a的交點(diǎn)的y坐標(biāo)值大于c的,則認(rèn)為此處a>c。



在圖(a)中,在r處,a>c;在t處,a還是>c,那么我們認(rèn)為a和c沒有相交。而在圖(b)中,在v處,e>f,而在圖w處,f>e,故e和f相交。


上圖描述了一個(gè)算法,我們按照線段端點(diǎn)的x坐標(biāo),從小到達(dá),進(jìn)行“掃除”。當(dāng)在一個(gè)線段的左端點(diǎn)掃除時(shí),將所有相交的線段序列按序放入一個(gè)“完全前序關(guān)系T”中。當(dāng)掃到線段的右端點(diǎn)時(shí),從T中去除該線段。但是,如果位于在該線段上方的線段集合,與位于該線段下方的線段集合有交集,則表明有線段相交。


關(guān)鍵在于,如果存儲(chǔ)T,如果求交集。可以用紅黑樹來存儲(chǔ)T。


算法步驟

  1. 初始化T為空集
  2. 對(duì)線段的端點(diǎn)排序
  3. 在端點(diǎn)p處,開始掃除,從最左邊的處開始
    如果p是線段s的左端點(diǎn)
    Insert(T, s);
    如果有線段在掃除線處相交
    return true;
    如果p是線段的右端點(diǎn)
    如果above(T, s) 和 below(T, s)有交集,則
    return true;//即線段集中存在線段相交
    無交集則,Delete(T, s);
  4. return false

三、尋找凸包
點(diǎn)集Q的凸包,是一個(gè)最小的凸多邊形P,滿足Q中的每個(gè)點(diǎn)都在P的邊界上,或者在P的內(nèi)部。****

Graham掃描法: 復(fù)雜度O(nlogn)
選取y最小的點(diǎn),多個(gè)y最小的話,選取其中x最小的點(diǎn),作為p0****

剩余的點(diǎn),按照p0和pi的極角的逆時(shí)針排序,編號(hào)為p1,p2,...,pm

如果m小于2,表示點(diǎn)數(shù)小于3,形不成多邊形

設(shè)定以空棧S,將p0、p1、p2壓入棧中。

for i=3 to m
得到棧頂?shù)?個(gè)點(diǎn)pi-1和pi-2,如果t1t0t0pi轉(zhuǎn)的時(shí)候,不是左轉(zhuǎn),就把頂點(diǎn)t0出棧;

如果出棧了t0,就繼續(xù)a,直到棧的頂點(diǎn)不再出棧位置

將pi入棧

return S


圖中,從a到f是一步一步選擇的過程。

Jarvis步進(jìn)法:復(fù)雜度O(nh),h是凸包頂點(diǎn)數(shù)


先找到最下邊結(jié)點(diǎn)里最左邊的點(diǎn)p0,然后尋找使得p0p1極角最小的點(diǎn),則p1也是凸包頂點(diǎn);繼續(xù)尋找使得p1p2極角最小的點(diǎn),直到達(dá)到最高點(diǎn)pk,上圖是p3,此時(shí)已經(jīng)構(gòu)造好了CH(Q)的右鏈。為了構(gòu)造左鏈,尋找pk+1使得pkpk+1極角最小,但此時(shí)x軸啊原x軸的負(fù)方向。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,908評(píng)論 6 541
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,324評(píng)論 3 429
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,018評(píng)論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,675評(píng)論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 72,417評(píng)論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,783評(píng)論 1 329
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,779評(píng)論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,960評(píng)論 0 290
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,522評(píng)論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 41,267評(píng)論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,471評(píng)論 1 374
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,009評(píng)論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,698評(píng)論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,099評(píng)論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,386評(píng)論 1 294
  • 我被黑心中介騙來泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 52,204評(píng)論 3 398
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 48,436評(píng)論 2 378

推薦閱讀更多精彩內(nèi)容