Relation Extraction with Matrix Factorization and Universal Schemas

Abstract

The paper studies techniques for inferring a model of entities and relations capable of performing basic types of semantic inference (e.g., predicting if a specific relation holds for a given pair of entities). The models exploit different types of embeddings of entities and relations.

This problem is usually tackled either via distant weak supervision from a knowledge base (providing structure and relational schemas) or in a totally unsupervised fashion (without any pre-defined schemas). The present approach aims at combining both trends with the introduction of universal schemas that can blend pre-defined ones from knowledge bases and uncertain ones extracted from free text. This paper is very ambitious and interesting.

Related Work

relation extraction

There has been a lot of previous research on learning entailment (aka inference) rules (e.g., Chkolvsky and Pantel 2004; Berant et al, ACL 2011; Nakashole et al, ACL 2012). Also, there has been some of the very related work on embedding relations, e.g., Bordes et al (AAAI 2011), or, very closely related, Jenatton et al (NIPS 2012).

Matrix Factorization

Matrix factorization as a technique of Collaborative filtering has been the preferred choice for recommendation systems ever since Netflix million competition was held a few years back. Further, with the advent of news personalization, advanced search and user analytics, the concept has gained prominence.

In this paper, columns correspond to relations, and rows correspond to entity tuples. By contrast, in (Murphy et al., 2012) columns are words, and rows are contextual features such as “words in a local window.” Consequently, this paper’s objective is to complete the matrix, whereas their objective is to learn better latent embeddings of words (which by themselves again cannot capture any sense of asymmetry).

Save Storage

Although the paper doesn’t explicit point out how common is it that a tuple shares many relations, it remains concern. The experiments seem to show that mixing data sources is beneficial.

Trends

The researchers are ambitious to bridge knowledges bases and text for information extraction, and this paper seems to go along this trend. However, the paper’s scheme is limited before complex named entity disambiguation is solved, since it relies on the fact that entities constituting tuples from the Freebase and tuples extracted from the text have been exactly matched beforehand.

Generalized Matrix Factorization

It has been a general machine learning problem formulated as:

Training data

V: m x n input matrix (e.g., rating matrix)
Z: training set of indexes in V (e.g., subset of known ratings)
Parameter space

W: row factors (e.g., m x r latent customer factors)
H: column factors (e.g., r x n latent movie factors)
Model

Lij(Wi?,H?j): loss at element (i,j)
Includes prediction error, regularization, auxiliary information, . . .
Constraints (e.g., non-negativity)

SVM V.S. FM
FM is short for Factorization Machine. Indeed, it can be interpreted as Factorization Methods and Support Vector Machine. It is firstly published by Steffen Rendle.
Factorization machines (FM) are a generic approach that allows to mimic most factorization models by feature engineering. This way, factorization machines combine the generality of feature engineering with the superiority of factorization models in estimating interactions between categorical variables of large domain. libFM is a software implementation for factorization machines that features stochastic gradient descent (SGD) and alternating least squares (ALS) optimization as well as Bayesian inference using Markov Chain Monte Carlo (MCMC).

Stochastic Gradient Descent for Matrix Factorization

Among the various algorithmic techniques available, the following are more popular: Alternating Least Squares (ALS), Non-Negative Matrix Factorization and Stochastic Gradient Descent (SGD). Here I only presents SGD for MF.

SDG is a well know technique which tends to compute direction of steepest descent and then takes a step in that direction. Among the variants include:

(a)Partitioned SGD: distribute without using stratification and run independently and in parallel on partitions (b)Pipelined SGD: based on ‘delayed update’ scheme (c)Decentralized SGD: computation in decentralized and distributed fashion

The main solution is as follows:

Set θ=(W,H) and use

L(θ)=∑(i,j)∈ZLij(Wi?,H?j),
L′(θ)=∑(i,j)∈ZL′ij(Wi?,H?j),
L^′(θ,z)=NL′izjz(Wiz?,H?jz), where N=|Z|
SGD epoch

Pick a random entry z∈Z
Compute approximate gradient L^′(θ,z)
Update parameters θn+1=θn??nL^′(θ,z)
Repeat N times

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,646評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,595評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,560評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,035評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,814評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,224評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,301評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,444評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,988評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,804評論 3 355
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,998評論 1 370
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,544評論 5 360
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,237評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,665評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,927評論 1 287
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,706評論 3 393
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,993評論 2 374

推薦閱讀更多精彩內容

  • 我今年15歲,這是個任性的年紀。我心安理得的享受著父母的愛。哦,不對,應是母親的愛,我們家是單親。 我從小就挑食,...
    濫情kk閱讀 229評論 0 1
  • 最近剛忙活完現有項目和elasticsearch的集成,其中踩了很多坑也學到了很多,現在工作告一段落了,就總結下自...
    steinliber閱讀 1,175評論 0 6
  • 其實,我不喜歡工作。由內而發的討厭。 是的,可能很多人都不喜歡工作,為了生計,為了生活。
    兔子先生的自白閱讀 192評論 0 0
  • 不知道為什么看完《少即是多》腦海里就是如題這九個字。 幸福是什么呢? 作者本田直之給出了一些答案...
    小朱Judy閱讀 643評論 5 2