題目
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
解題之法
int minDistance(string word1, string word2) {
if(word1 == word2) return 0;
int m = word1.size();
int n = word2.size();
if(word1 == "")
{
return n;
}
if(word2 == "")
{
return m;
}
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
for(int i = 0; i < m + 1; ++i)
{
dp[i][n] = m - i;
}
for(int j = 0; j < n + 1; ++j)
{
dp[m][j] = n - j;
}
for(int i = m - 1; i >= 0; --i)
{
for(int j = n - 1; j >= 0; --j)
{
if(word1[i] == word2[j])
{
dp[i][j] = dp[i+1][j+1];
}
else
{
dp[i][j] = min(1 + dp[i][j+1], min(1 + dp[i+1][j], 1 + dp[i+1][j+1]));
}
}
}
return dp[0][0];
}
這是由遞歸轉化而來的,不過遞歸會TLE:
int minDistance(string word1, string word2) {
if(word1 == word2) return 0;
int m = word1.size();
int n = word2.size();
if(word1 == "")
{
return n;
}
if(word2 == "")
{
return m;
}
if(word1[0] == word2[0])
{
return minDistance(word1.substr(1), word2.substr(1));
}
else
{
return min(1 + minDistance(word1, word2.substr(1)), min(1 + minDistance(word1.substr(1), word2), 1 + minDistance(word1.substr(1), word2.substr(1))));
}
}
分析
Leetcode上好多動態規劃的題 , 一般碰到這樣的題,先用遞歸把做出來,結果顯然TLE。
既然能用遞歸,就肯定可以用動態規劃,然后就把遞歸變成動態規劃,變成動態規劃后看能不能再優化空間,如果不能,就直接return了,如果能就優化,這個現在已經成為套路了。
另一種解法:
class Solution {
public:
int minDistance(string word1, string word2) {
int n1 = word1.size(), n2 = word2.size();
int dp[n1 + 1][n2 + 1];
for (int i = 0; i <= n1; ++i) dp[i][0] = i;
for (int i = 0; i <= n2; ++i) dp[0][i] = i;
for (int i = 1; i <= n1; ++i) {
for (int j = 1; j <= n2; ++j) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
}
return dp[n1][n2];
}
};
分析:
這道題讓求從一個字符串轉變到另一個字符串需要的變換步驟,共有三種變換方式,插入一個字符,刪除一個字符,和替換一個字符。根據以往的經驗,對于字符串相關的題目十有八九都是用動態規劃Dynamic Programming來解,這道題也不例外。這道題我們需要維護一個二維的數組dp,其中dp[i][j]表示從word1的前i個字符轉換到word2的前j個字符所需要的步驟。那我們可以先給這個二維數組dp的第一行第一列賦值,這個很簡單,因為第一行和第一列對應的總有一個字符串是空串,于是轉換步驟完全是另一個字符串的長度。跟以往的DP題目類似,難點還是在于找出遞推式,我們可以舉個例子來看,比如word1是“bbc",word2是”abcd“,那么我們可以得到dp數組如下:
? a b c d
? 0 1 2 3 4
b 1 1 1 2 3
b 2 2 1 2 3
c 3 3 2 1 2
我們通過觀察可以發現,當word1[i] == word2[j]時,dp[i][j] = dp[i - 1][j - 1],其他情況時,dp[i][j]是其左,左上,上的三個值中的最小值加1,那么可以得到遞推式為:
dp[i][j] = / dp[i - 1][j - 1] if word1[i - 1] == word2[j - 1]
\ min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1 else