[spark streaming] 動態生成 Job 并提交執行

前言

Spark Streaming Job的生成是通過JobGenerator每隔 batchDuration 長時間動態生成的,每個batch 對應提交一個JobSet,因為針對一個batch可能有多個輸出操作。

概述流程:

  • 定時器定時向 eventLoop 發送生成job的請求
  • 通過receiverTracker 為當前batch分配block
  • 為當前batch生成對應的 Jobs
  • 將Jobs封裝成JobSet 提交執行

入口

在 JobGenerator 初始化的時候就創建了一個定時器:

private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
    longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")

每隔 batchDuration 就會向 eventLoop 發送 GenerateJobs(new Time(longTime))消息,eventLoop的事件處理方法中會調用generateJobs(time)方法:

      case GenerateJobs(time) => generateJobs(time)
private def generateJobs(time: Time) {
    // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
    // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
    ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
    Try {
      jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
      graph.generateJobs(time) // generate jobs using allocated block
    } match {
      case Success(jobs) =>
        val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
        jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
      case Failure(e) =>
        jobScheduler.reportError("Error generating jobs for time " + time, e)
        PythonDStream.stopStreamingContextIfPythonProcessIsDead(e)
    }
    eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
  }

為當前batchTime分配Block

首先調用receiverTracker.allocateBlocksToBatch(time)方法為當前batchTime分配對應的Block,最終會調用receiverTracker的Block管理者receivedBlockTrackerallocateBlocksToBatch方法:

def allocateBlocksToBatch(batchTime: Time): Unit = synchronized {
    if (lastAllocatedBatchTime == null || batchTime > lastAllocatedBatchTime) {
      val streamIdToBlocks = streamIds.map { streamId =>
          (streamId, getReceivedBlockQueue(streamId).dequeueAll(x => true))
      }.toMap
      val allocatedBlocks = AllocatedBlocks(streamIdToBlocks)
      if (writeToLog(BatchAllocationEvent(batchTime, allocatedBlocks))) {
        timeToAllocatedBlocks.put(batchTime, allocatedBlocks)
        lastAllocatedBatchTime = batchTime
      } else {
        logInfo(s"Possibly processed batch $batchTime needs to be processed again in WAL recovery")
      }
    } else {
      logInfo(s"Possibly processed batch $batchTime needs to be processed again in WAL recovery")
    }
  }
private def getReceivedBlockQueue(streamId: Int): ReceivedBlockQueue = {
    streamIdToUnallocatedBlockQueues.getOrElseUpdate(streamId, new ReceivedBlockQueue)
  }

可以看到是從streamIdToUnallocatedBlockQueues中獲取到所有streamId對應的未分配的blocks,該隊列的信息是supervisor 存儲好Block后向receiverTracker上報的Block信息,詳情可見 ReceiverTracker 數據產生與存儲。

獲取到所有streamId對應的未分配的blockInfos后,將其放入了timeToAllocatedBlocks:Map[Time, AllocatedBlocks]中,后面生成RDD的時候會用到。

為當前batchTime生成Jobs

調用DStreamGraphgenerateJobs方法為當前batchTime生成job:

 def generateJobs(time: Time): Seq[Job] = {
    logDebug("Generating jobs for time " + time)
    val jobs = this.synchronized {
      outputStreams.flatMap { outputStream =>
        val jobOption = outputStream.generateJob(time)
        jobOption.foreach(_.setCallSite(outputStream.creationSite))
        jobOption
      }
    }
    logDebug("Generated " + jobs.length + " jobs for time " + time)
    jobs
  }

一個outputStream就對應一個job,遍歷所有的outputStreams,為其生成job:

# ForEachDStream
override def generateJob(time: Time): Option[Job] = {
    parent.getOrCompute(time) match {
      case Some(rdd) =>
        val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
          foreachFunc(rdd, time)
        }
        Some(new Job(time, jobFunc))
      case None => None
    }
  }

先獲取到time對應的RDD,然后將其作為參數再調用foreachFunc方法,foreachFunc方法是通過構造器傳過來的,我們來看看print()輸出的情況:

def print(num: Int): Unit = ssc.withScope {
    def foreachFunc: (RDD[T], Time) => Unit = {
      (rdd: RDD[T], time: Time) => {
        val firstNum = rdd.take(num + 1)
        // scalastyle:off println
        println("-------------------------------------------")
        println(s"Time: $time")
        println("-------------------------------------------")
        firstNum.take(num).foreach(println)
        if (firstNum.length > num) println("...")
        println()
        // scalastyle:on println
      }
    }
    foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)
  }

這里的構造的foreachFunc方法就是最終和rdd一起提交job的執行方法,也即對rdd調用take()后并打印,真正觸發action操作的是在這個func函數里,現在再來看看是怎么拿到rdd的,每個DStream都有一個generatedRDDs:Map[Time, RDD[T]]變量,來保存time對應的RDD,若獲取不到則會通過compute()方法來計算,對于需要在executor上啟動Receiver來接收數據的ReceiverInputDStream來說:

 override def compute(validTime: Time): Option[RDD[T]] = {
    val blockRDD = {

      if (validTime < graph.startTime) {
        // If this is called for any time before the start time of the context,
        // then this returns an empty RDD. This may happen when recovering from a
        // driver failure without any write ahead log to recover pre-failure data.
        new BlockRDD[T](ssc.sc, Array.empty)
      } else {
        // Otherwise, ask the tracker for all the blocks that have been allocated to this stream
        // for this batch
        val receiverTracker = ssc.scheduler.receiverTracker
        val blockInfos = receiverTracker.getBlocksOfBatch(validTime).getOrElse(id, Seq.empty)

        // Register the input blocks information into InputInfoTracker
        val inputInfo = StreamInputInfo(id, blockInfos.flatMap(_.numRecords).sum)
        ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)

        // Create the BlockRDD
        createBlockRDD(validTime, blockInfos)
      }
    }
    Some(blockRDD)
  }

會通過receiverTracker來獲取該batch對應的blocks,前面已經分析過為所有streamId分配了對應的未分配的block,并且放在了timeToAllocatedBlocks:Map[Time, AllocatedBlocks]中,這里底層就是從這個timeToAllocatedBlocks獲取到的blocksInfo,然后調用了createBlockRDD(validTime, blockInfos)通過blockId創建了RDD。

最后,將通過此RDD和foreachFun構建jobFunc,并創建Job返回。

封裝jobs成JobSet并提交執行

每個outputStream對應一個Job,最終就會生成一個jobs,為這個jobs創建JobSet,并通過jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))來提交這個JobSet:

jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))

然后通過jobExecutor來執行,jobExecutor是一個線程池,并行度默認為1,可通過spark.streaming.concurrentJobs配置,即同時可執行幾個批次的數據。

處理類JobHandler中調用的是Job.run(),執行的是前面構建的 jobFunc 方法。

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,048評論 6 542
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,414評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 178,169評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,722評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,465評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,823評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,813評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,000評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,554評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,295評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,513評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,035評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,722評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,125評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,430評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,237評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,482評論 2 379

推薦閱讀更多精彩內容