前言
Spark Streaming Job的生成是通過JobGenerator
每隔 batchDuration 長時間動態生成的,每個batch 對應提交一個JobSet,因為針對一個batch可能有多個輸出操作。
概述流程:
- 定時器定時向 eventLoop 發送生成job的請求
- 通過receiverTracker 為當前batch分配block
- 為當前batch生成對應的 Jobs
- 將Jobs封裝成JobSet 提交執行
入口
在 JobGenerator 初始化的時候就創建了一個定時器:
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")
每隔 batchDuration 就會向 eventLoop 發送 GenerateJobs(new Time(longTime))消息,eventLoop的事件處理方法中會調用generateJobs(time)方法:
case GenerateJobs(time) => generateJobs(time)
private def generateJobs(time: Time) {
// Checkpoint all RDDs marked for checkpointing to ensure their lineages are
// truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
Try {
jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
graph.generateJobs(time) // generate jobs using allocated block
} match {
case Success(jobs) =>
val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
PythonDStream.stopStreamingContextIfPythonProcessIsDead(e)
}
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}
為當前batchTime分配Block
首先調用receiverTracker.allocateBlocksToBatch(time)
方法為當前batchTime分配對應的Block,最終會調用receiverTracker
的Block管理者receivedBlockTracker
的allocateBlocksToBatch
方法:
def allocateBlocksToBatch(batchTime: Time): Unit = synchronized {
if (lastAllocatedBatchTime == null || batchTime > lastAllocatedBatchTime) {
val streamIdToBlocks = streamIds.map { streamId =>
(streamId, getReceivedBlockQueue(streamId).dequeueAll(x => true))
}.toMap
val allocatedBlocks = AllocatedBlocks(streamIdToBlocks)
if (writeToLog(BatchAllocationEvent(batchTime, allocatedBlocks))) {
timeToAllocatedBlocks.put(batchTime, allocatedBlocks)
lastAllocatedBatchTime = batchTime
} else {
logInfo(s"Possibly processed batch $batchTime needs to be processed again in WAL recovery")
}
} else {
logInfo(s"Possibly processed batch $batchTime needs to be processed again in WAL recovery")
}
}
private def getReceivedBlockQueue(streamId: Int): ReceivedBlockQueue = {
streamIdToUnallocatedBlockQueues.getOrElseUpdate(streamId, new ReceivedBlockQueue)
}
可以看到是從streamIdToUnallocatedBlockQueues
中獲取到所有streamId對應的未分配的blocks,該隊列的信息是supervisor 存儲好Block后向receiverTracker上報的Block信息,詳情可見 ReceiverTracker 數據產生與存儲。
獲取到所有streamId對應的未分配的blockInfos后,將其放入了timeToAllocatedBlocks:Map[Time, AllocatedBlocks]
中,后面生成RDD的時候會用到。
為當前batchTime生成Jobs
調用DStreamGraph
的generateJobs
方法為當前batchTime生成job:
def generateJobs(time: Time): Seq[Job] = {
logDebug("Generating jobs for time " + time)
val jobs = this.synchronized {
outputStreams.flatMap { outputStream =>
val jobOption = outputStream.generateJob(time)
jobOption.foreach(_.setCallSite(outputStream.creationSite))
jobOption
}
}
logDebug("Generated " + jobs.length + " jobs for time " + time)
jobs
}
一個outputStream就對應一個job,遍歷所有的outputStreams,為其生成job:
# ForEachDStream
override def generateJob(time: Time): Option[Job] = {
parent.getOrCompute(time) match {
case Some(rdd) =>
val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
foreachFunc(rdd, time)
}
Some(new Job(time, jobFunc))
case None => None
}
}
先獲取到time對應的RDD,然后將其作為參數再調用foreachFunc方法,foreachFunc方法是通過構造器傳過來的,我們來看看print()輸出的情況:
def print(num: Int): Unit = ssc.withScope {
def foreachFunc: (RDD[T], Time) => Unit = {
(rdd: RDD[T], time: Time) => {
val firstNum = rdd.take(num + 1)
// scalastyle:off println
println("-------------------------------------------")
println(s"Time: $time")
println("-------------------------------------------")
firstNum.take(num).foreach(println)
if (firstNum.length > num) println("...")
println()
// scalastyle:on println
}
}
foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)
}
這里的構造的foreachFunc方法就是最終和rdd一起提交job的執行方法,也即對rdd調用take()后并打印,真正觸發action操作的是在這個func函數里,現在再來看看是怎么拿到rdd的,每個DStream都有一個generatedRDDs:Map[Time, RDD[T]]
變量,來保存time對應的RDD,若獲取不到則會通過compute()方法來計算,對于需要在executor上啟動Receiver來接收數據的ReceiverInputDStream來說:
override def compute(validTime: Time): Option[RDD[T]] = {
val blockRDD = {
if (validTime < graph.startTime) {
// If this is called for any time before the start time of the context,
// then this returns an empty RDD. This may happen when recovering from a
// driver failure without any write ahead log to recover pre-failure data.
new BlockRDD[T](ssc.sc, Array.empty)
} else {
// Otherwise, ask the tracker for all the blocks that have been allocated to this stream
// for this batch
val receiverTracker = ssc.scheduler.receiverTracker
val blockInfos = receiverTracker.getBlocksOfBatch(validTime).getOrElse(id, Seq.empty)
// Register the input blocks information into InputInfoTracker
val inputInfo = StreamInputInfo(id, blockInfos.flatMap(_.numRecords).sum)
ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)
// Create the BlockRDD
createBlockRDD(validTime, blockInfos)
}
}
Some(blockRDD)
}
會通過receiverTracker來獲取該batch對應的blocks,前面已經分析過為所有streamId分配了對應的未分配的block,并且放在了timeToAllocatedBlocks:Map[Time, AllocatedBlocks]
中,這里底層就是從這個timeToAllocatedBlocks
獲取到的blocksInfo,然后調用了createBlockRDD(validTime, blockInfos)
通過blockId創建了RDD。
最后,將通過此RDD和foreachFun構建jobFunc,并創建Job返回。
封裝jobs成JobSet并提交執行
每個outputStream對應一個Job,最終就會生成一個jobs,為這個jobs創建JobSet,并通過jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
來提交這個JobSet:
jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
然后通過jobExecutor來執行,jobExecutor是一個線程池,并行度默認為1,可通過spark.streaming.concurrentJobs
配置,即同時可執行幾個批次的數據。
處理類JobHandler中調用的是Job.run(),執行的是前面構建的 jobFunc 方法。