python lefse

github: https://github.com/SegataLab/lefse

install

conda create -n lefse
conda activate lefse
conda install -c bioconda lefse

format

python ~/huty/softwares/miniconda3/envs/lefse/bin/lefse_format_input.py \
input_layer.txt input_layer.in -c 1 -u 2

-c指定分組行
-s指定亞組行,若沒有可以不指定
-u指定樣本編號
-o指定歸一化后范圍; -o 1000000

usage: lefse_format_input.py INPUT_FILE OUTPUT_FILE
--output_table OUTPUT_TABLE  the formatted table in txt format
-f {c,r}              set whether the features are on rows (default) or on columns
-c [1..n_feats]       set which feature use as class (default 1)
-s [1..n_feats]       set which feature use as subclass (default -1 meaning no subclass)
-u [1..n_feats]       set which feature use as subject (default -1 meaning no subject)
-o float              set the normalization value (default -1.0 meaning no normalization)

analysis

python ~/huty/softwares/miniconda3/envs/lefse/bin/lefse_run.py \
input_layer.in input_layer.res
-a float        set the alpha value for the Anova test (default 0.05)
-w float        set the alpha value for the Wilcoxon test (default 0.05)
-l float        set the threshold on the absolute value of the logarithmic LDA score (default 2.0)
-y {0,1}        (for multiclass tasks) set whether the test is performed in
                  a one-against-one ( 1 - more strict!) or in a one-against-
                  all setting ( 0 - less strict) (default 0)

過程

# layer
Number of significantly discriminative features: 6806 ( 6806 ) before internal wilcoxon
Number of discriminative features with abs LDA score > 2.0 : 1169
# site
Number of significantly discriminative features: 127 ( 737 ) before internal wilcoxon
Number of discriminative features with abs LDA score > 2.0 : 1

過程

Number of significantly discriminative features: 7 ( 7 ) before internal wilcoxon
Number of discriminative features with abs LDA score > 2.0 : 7
R[write to console]: Warning messages:

R[write to console]: 1: package ‘survival’ was built under R version 4.2.2

R[write to console]: 2: package ‘mvtnorm’ was built under R version 4.2.1

R[write to console]: 3: package ‘modeltools’ was built under R version 4.2.1

R[write to console]: 4: package ‘coin’ was built under R version 4.2.1

參考:
宏基因組數據分析:差異分析(LEfSe安裝使用及LDA score計算)

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,527評論 6 544
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,687評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,640評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,957評論 1 318
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,682評論 6 413
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,011評論 1 329
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,009評論 3 449
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,183評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,714評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,435評論 3 359
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,665評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,148評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,838評論 3 350
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,251評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,588評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,379評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,627評論 2 380

推薦閱讀更多精彩內容