Mysql索引原理與慢查詢優化二

五 正確使用索引

一 索引未命中

并不是說我們創建了索引就一定會加快查詢速度,若想利用索引達到預想的提高查詢速度的效果,我們在添加索引時,必須遵循以下問題

1 范圍問題,或者說條件不明確,條件中出現這些符號或關鍵字:>、>=、<、<=、!= 、between...and...、like、

大于號、小于號

Paste_Image.png

不等于!=

Paste_Image.png

between ...and...

Paste_Image.png

like

Paste_Image.png
Paste_Image.png

2 盡量選擇區分度高的列作為索引,區分度的公式是count(distinct col)/count(*),表示字段不重復的比例,比例越大我們掃描的記錄數越少,唯一鍵的區分度是1,而一些狀態、性別字段可能在大數據面前區分度就是0,那可能有人會問,這個比例有什么經驗值嗎?使用場景不同,這個值也很難確定,一般需要join的字段我們都要求是0.1以上,即平均1條掃描10條記錄

#先把表中的索引都刪除,讓我們專心研究區分度的問題
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | YES  | MUL | NULL    |       |
| name   | varchar(20) | YES  |     | NULL    |       |
| gender | char(5)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  | MUL | NULL    |       |
+--------+-------------+------+-----+---------+-------+
rows in set (0.00 sec)

mysql> drop index a on s1;
Query OK, 0 rows affected (0.20 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> drop index d on s1;
Query OK, 0 rows affected (0.18 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | YES  |     | NULL    |       |
| name   | varchar(20) | YES  |     | NULL    |       |
| gender | char(5)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  |     | NULL    |       |
+--------+-------------+------+-----+---------+-------+
rows in set (0.00 sec)

#先把表中的索引都刪除,讓我們專心研究區分度的問題
Paste_Image.png
我們編寫存儲過程為表s1批量添加記錄,name字段的值均為egon,也就是說name這個字段的區分度很低(gender字段也是一樣的,我們稍后再搭理它)

回憶b+樹的結構,查詢的速度與樹的高度成反比,要想將樹的高低控制的很低,需要保證:在某一層內數據項均是按照從左到右,從小到大的順序依次排開,即左1<左2<左3<...

而對于區分度低的字段,無法找到大小關系,因為值都是相等的,毫無疑問,還想要用b+樹存放這些等值的數據,只能增加樹的高度,字段的區分度越低,則樹的高度越高。極端的情況,索引字段的值都一樣,那么b+樹幾乎成了一根棍。本例中就是這種極端的情況,name字段所有的值均為'egon'

#現在我們得出一個結論:為區分度低的字段建立索引,索引樹的高度會很高,然而這具體會帶來什么影響呢???

#1:如果條件是name='xxxx',那么肯定是可以第一時間判斷出'xxxx'是不在索引樹中的(因為樹中所有的值均為'egon’),所以查詢速度很快

#2:如果條件正好是name='egon',查詢時,我們永遠無法從樹的某個位置得到一個明確的范圍,只能往下找,往下找,往下找。。。這與全表掃描的IO次數沒有多大區別,所以速度很慢

分析原因

3 =和in可以亂序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意順序,mysql的查詢優化器會幫你優化成索引可以識別的形式

4 索引列不能參與計算,保持列“干凈”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很簡單,b+樹中存的都是數據表中的字段值,但進行檢索時,需要把所有元素都應用函數才能比較,顯然成本太大。所以語句應該寫成create_time = unix_timestamp(’2014-05-29’)

Paste_Image.png

5 and

條件1 and 條件2:在條件1不成立的情況下,不會再去判斷條件2,此時若條件1的字段有索引,而條件2沒有,那么查詢速度依然很快

Paste_Image.png

在左邊條件成立但是索引字段的區分度低的情況下(name與gender均屬于這種情況),會依次往右找到一個區分度高的索引字段,加速查詢

Paste_Image.png
Paste_Image.png

經過分析,在條件為name='egon' and gender='male' and id>333 and email='xxx'的情況下,我們完全沒必要為前三個條件的字段加索引,因為只能用上email字段的索引,前三個字段的索引反而會降低我們的查詢效率

Paste_Image.png

6 最左前綴匹配原則,非常重要的原則,對于組合索引mysql會一直向右匹配直到遇到范圍查詢(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)順序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引則都可以用到,a,b,d的順序可以任意調整。

Paste_Image.png

7 其他情況

- 使用函數
    select * from tb1 where reverse(email) = 'wupeiqi';
        
- or
    select * from tb1 where nid = 1 or name = 'seven@live.com';
    
    
    特別的:當or條件中有未建立索引的列才失效,以下會走索引
            select * from tb1 where nid = 1 or name = 'seven';
            select * from tb1 where nid = 1 or name = 'seven@live.com' and email = 'alex'
            
            
- 類型不一致
    如果列是字符串類型,傳入條件是必須用引號引起來,不然...
    select * from tb1 where email = 999;
    
普通索引的不等于不會走索引
- !=
    select * from tb1 where email != 'alex'
    
    特別的:如果是主鍵,則還是會走索引
        select * from tb1 where nid != 123
- >
    select * from tb1 where email > 'alex'
    
    
    特別的:如果是主鍵或索引是整數類型,則還是會走索引
        select * from tb1 where nid > 123
        select * from tb1 where num > 123
        
        
#排序條件為索引,則select字段必須也是索引字段,否則無法命中
- order by
    select name from s1 order by email desc;
    當根據索引排序時候,select查詢的字段如果不是索引,則不走索引
    select email from s1 order by email desc;
    特別的:如果對主鍵排序,則還是走索引:
        select * from tb1 order by nid desc;
 
- 組合索引最左前綴
    如果組合索引為:(name,email)
    name and email       -- 使用索引
    name                 -- 使用索引
    email                -- 不使用索引


- count(1)或count(列)代替count(*)在mysql中沒有差別了

- create index xxxx  on tb(title(19)) #text類型,必須制定長度

其他注意事項

- 避免使用select *
- count(1)或count(列) 代替 count(*)
- 創建表時盡量時 char 代替 varchar
- 表的字段順序固定長度的字段優先
- 組合索引代替多個單列索引(經常使用多個條件查詢時)
- 盡量使用短索引
- 使用連接(JOIN)來代替子查詢(Sub-Queries)
- 連表時注意條件類型需一致
- 索引散列值(重復少)不適合建索引,例:性別不適合

三 覆蓋索引與索引合并

#覆蓋索引:
    - 在索引文件中直接獲取數據
    http://blog.itpub.net/22664653/viewspace-774667/

#分析
select * from s1 where id=123;
該sql命中了索引,但未覆蓋索引。
利用id=123到索引的數據結構中定位到該id在硬盤中的位置,或者說再數據表中的位置。
但是我們select的字段為*,除了id以外還需要其他字段,這就意味著,我們通過索引結構取到id還不夠,還需要利用該id再去找到該id所在行的其他字段值,這是需要時間的,很明顯,如果我們只select id,就減去了這份苦惱,如下
select id from s1 where id=123;
這條就是覆蓋索引了,命中索引,且從索引的數據結構直接就取到了id在硬盤的地址,速度很快
#索引合并:把多個單列索引合并使用

#分析:
組合索引能做到的事情,我們都可以用索引合并去解決,比如
create index ne on s1(name,email);#組合索引
我們完全可以單獨為name和email創建索引

組合索引可以命中:
select * from s1 where name='egon' ;
select * from s1 where name='egon' and email='adf';

索引合并可以命中:
select * from s1 where name='egon' ;
select * from s1 where email='adf';
select * from s1 where name='egon' and email='adf';

乍一看好像索引合并更好了:可以命中更多的情況,但其實要分情況去看,如果是name='egon' and email='adf',那么組合索引的效率要高于索引合并,如果是單條件查,那么還是用索引合并比較合理

六 查詢優化神器-explain

關于explain命令相信大家并不陌生,具體用法和字段含義可以參考官網explain-output,這里需要強調rows是核心指標,絕大部分rows小的語句執行一定很快(有例外,下面會講到)。所以優化語句基本上都是在優化rows。

執行計劃:讓mysql預估執行操作(一般正確)
    all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
    id,email
    
    慢:
        select * from userinfo3 where name='alex'
        
        explain select * from userinfo3 where name='alex'
        type: ALL(全表掃描)
            select * from userinfo3 limit 1;
    快:
        select * from userinfo3 where email='alex'
        type: const(走索引)

explain詳解

七 慢查詢優化的基本步驟

0.先運行看看是否真的很慢,注意設置SQL_NO_CACHE
1.where條件單表查,鎖定最小返回記錄表。這句話的意思是把查詢語句的where都應用到表中返回的記錄數最小的表開始查起,單表每個字段分別查詢,看哪個字段的區分度最高
2.explain查看執行計劃,是否與1預期一致(從鎖定記錄較少的表開始查詢)
3.order by limit 形式的sql語句讓排序的表優先查
4.了解業務方使用場景
5.加索引時參照建索引的幾大原則
6.觀察結果,不符合預期繼續從0分析

八 慢日志管理

慢日志
            - 執行時間 > 10
            - 未命中索引
            - 日志文件路徑
            
        配置:
            - 內存
                show variables like '%query%';
                show variables like '%queries%';
                set global 變量名 = 值
            - 配置文件
                mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini'
                
                my.conf內容:
                    slow_query_log = ON
                    slow_query_log_file = D:/....
                    
                注意:修改配置文件之后,需要重啟服務
MySQL日志管理
========================================================
錯誤日志: 記錄 MySQL 服務器啟動、關閉及運行錯誤等信息
二進制日志: 又稱binlog日志,以二進制文件的方式記錄數據庫中除 SELECT 以外的操作
查詢日志: 記錄查詢的信息
慢查詢日志: 記錄執行時間超過指定時間的操作
中繼日志: 備庫將主庫的二進制日志復制到自己的中繼日志中,從而在本地進行重放
通用日志: 審計哪個賬號、在哪個時段、做了哪些事件
事務日志或稱redo日志: 記錄Innodb事務相關的如事務執行時間、檢查點等
========================================================
一、bin-log
1. 啟用
# vim /etc/my.cnf
[mysqld]
log-bin[=dir\[filename]]
# service mysqld restart
2. 暫停
//僅當前會話
SET SQL_LOG_BIN=0;
SET SQL_LOG_BIN=1;
3. 查看
查看全部:
# mysqlbinlog mysql.000002
按時間:
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
# mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 

按字節數:
# mysqlbinlog mysql.000002 --start-position=260
# mysqlbinlog mysql.000002 --stop-position=260
# mysqlbinlog mysql.000002 --start-position=260 --stop-position=930
4. 截斷bin-log(產生新的bin-log文件)
a. 重啟mysql服務器
b. # mysql -uroot -p123 -e 'flush logs'
5. 刪除bin-log文件
# mysql -uroot -p123 -e 'reset master' 


二、查詢日志
啟用通用查詢日志
# vim /etc/my.cnf
[mysqld]
log[=dir\[filename]]
# service mysqld restart

三、慢查詢日志
啟用慢查詢日志
# vim /etc/my.cnf
[mysqld]
log-slow-queries[=dir\[filename]]
long_query_time=n
# service mysqld restart
MySQL 5.6:
slow-query-log=1
slow-query-log-file=slow.log
long_query_time=3
查看慢查詢日志
測試:BENCHMARK(count,expr)
SELECT BENCHMARK(50000000,2*3);

日志管理

轉載之

銜接

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,646評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,595評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,560評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,035評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,814評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,224評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,301評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,444評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,988評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,804評論 3 355
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,998評論 1 370
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,544評論 5 360
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,237評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,665評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,927評論 1 287
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,706評論 3 393
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,993評論 2 374

推薦閱讀更多精彩內容