首先,我們從最簡單的開始:
Write a program to check whether a given number is an Ugly Number.
Ugly Numbers are positive numbers whose prime factors only include 2, 3, 5.
For example, 6, 8 are ugly while 14 is not ugly since it includes another prime factor 7.
Note that 1 is typically treated as an ugly number.
Ugly Number是指 一個正數(shù)的素因子只包含2,3,5. 比如 6和8就是Ugly Number,而14不是, 14 = 2 * 7 多了另外一個素因子7. 所以判斷一個數(shù)字是不是Ugly Number就很簡單了,就是這幾個因子來回除。能整除就是Ugly Number,反之就不是。代碼如下:
public boolean isUgly(int num) {
if(num <= 0) return false;
if(num == 1) return true;
while (num > 1) {
if (num % 2 == 0) {
num = num / 2;
} else if(num % 3 == 0) {
num = num / 3;
} else if (num % 5 == 0) {
num = num / 5;
} else
return false;
}
return true;
}
那么繼續(xù)考慮一個進(jìn)階問題:
Write a program to find the n-th Ugly Number.
Ugly Number are positive numbers whose prime factors only include 2,3, 5. For example, **1,2, 3, 4, 5, 6, 8, 9, 10, 12 **is the sequence of the first 10 ugly numbers.
Note that 1 is typically treated as an ugly number.
我們升級一下來找一下第n個Ugly Number。對于任何一個Ugly Number k 那么 2 * k, 3 * k, 5 * k 都是Ugly Number。因此找第n個Ugly Number 就是,通過把一個Ugly Number跟素因子{2,3,5}乘積,不斷的按照數(shù)字大小增加到列表后面,直到找到第n個Ugly Number為止。
public int nthUglyNumber(int n) {
if(n == 1) return 1;
int[] uglyNumbers = new int[n];
uglyNumbers[0] = 1;
int idx2 = 0;
int idx3 = 0;
int idx5 = 0;
int counter = 1;
while(counter < n) {
int min = Math.min(
Math.min(uglyNumbers[idx2]*2, uglyNumbers[idx3] * 3),
uglyNumbers[idx5] * 5);
if(min == uglyNumbers[idx2] * 2) {
idx2++;
}
if(min == uglyNumbers[idx3] * 3) {
idx3++;
}
if(min == uglyNumbers[idx5] * 5) {
idx5++;
}
uglyNumbers[counter] = min;
counter++;
}
return uglyNumbers[n -1];
}
把這個更進(jìn)一步擴(kuò)展的更通用一點(diǎn):
Write a program to find the nth Super Ugly Number.
Super Ugly Numbers are positive numbers whose all prime factors are in the given prime list primes of size k. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] is the sequence of the first 12 Super Ugly Numbers given primes = [2, 7, 13, 19] of size 4.
Note:
(1) 1 is a super ugly number for any given primes.
(2) The given numbers in primes are in ascending order.
(3) 0 < k ≤ 100, 0< n ≤ 106, 0 < primes[i] < 1000.
原理同上不解釋,直接上代碼:
public int nthSuperUglyNumber(int n, int[] primes) {
if( n == 1 ) return 1;
ArrayList<Integer> uglyNumbers = new ArrayList<>();
uglyNumbers.add(1);
int[] index = new int[primes.length];
for(int i = 0; i < index.length; i++) {
index[i] = 0;
}
int counter = 1;
while(counter < n) {
int min = Integer.MAX_VALUE;
int minIndex = 0;
for (int i = 0; i < primes.length; i++) {
int currentVal = uglyNumbers.get(index[i]) * primes[i];
if(currentVal < min) {
min = currentVal;
minIndex = i;
}
}
index[minIndex]++;
if (uglyNumbers.get(uglyNumbers.size() -1 ) != min) {
//這個判斷很重要,不然會有大量重復(fù)結(jié)果。
uglyNumbers.add(min);
counter++;
}
}
return uglyNumbers.get(uglyNumbers.size() - 1);
}
當(dāng)然了,我這個代碼寫的比較low,有高手7行代碼解決問題,膜拜一下:
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> index(primes.size(), 0), ugly(n, INT_MAX);
ugly[0]=1;
for(int i=1; i<n; i++){
for(int j=0; j<primes.size(); j++)
ugly[i]=min(ugly[i],ugly[index[j]]*primes[j]);
for(int j=0; j<primes.size(); j++)
index[j]+=(ugly[i]==ugly[index[j]]*primes[j]);
}
return ugly[n-1];
}
Ugly Number 我們引申到質(zhì)數(shù)相關(guān)的經(jīng)典問題。
質(zhì)數(shù)(Prime Number)又稱素?cái)?shù),質(zhì)素定義為大于1的自然數(shù)中,除了1和它本身以外再有其他因數(shù)的數(shù)。
質(zhì)數(shù)問題有3個常見問題:
- 判斷一個數(shù)是否是質(zhì)數(shù);
- 給一個自然數(shù)N,打印出小于N的所有質(zhì)數(shù);
- 給一個自然數(shù)N,打印出前N個質(zhì)數(shù);
后兩個問題的答案以及效率跟第一個問題,即,你如何判斷一個數(shù)是質(zhì)數(shù)有關(guān)。
判斷一個數(shù)N是否是質(zhì)數(shù)最簡單的辦法是根據(jù)質(zhì)數(shù)的定義,通過不斷的除2 -- N-1之間的數(shù)字,看看是否能找到除1和自身之外的質(zhì)因子。
進(jìn)一步觀察發(fā)現(xiàn)除了2之外質(zhì)數(shù)一定是奇數(shù),因?yàn)樗械呐紨?shù)一定有質(zhì)因子 2。
再通過觀察發(fā)現(xiàn)只要嘗試3 -- N-1的開平方之間的數(shù)字就夠了,因?yàn)橐驍?shù)都是成對出現(xiàn)的,比如:100 : 1 * 100 , 2 * 50, 4 * 25,5 * 20, 10 * 10 ,因此只要嘗試到10就夠了。
bool isPrime(int n) {
if(n < 2) return false;
if(n == 2) return true;
for(int i = 3; i*i <= n; i += 2)
if(n%i == 0) return false;
return true;
}
最后,說一個求質(zhì)數(shù)比較牛逼的方法,篩除法。
這個方法是牛逼的數(shù)學(xué)家埃拉托斯特尼(Eratosthenes) 公元前276年--前194年提出的。
就是這個小老頭
這個人有多牛逼呢,說個小成就吧,設(shè)計(jì)了經(jīng)緯度,并且在2000多年前,用數(shù)學(xué)的方法測量出了地球直徑。
說回 篩除法
因?yàn)?strong>2是質(zhì)數(shù),因此可以把2的倍數(shù)全部去掉;
接著往下數(shù)3是質(zhì)數(shù),把3的倍數(shù)全部去掉;
繼續(xù)數(shù)最小的數(shù)是5,把5的倍數(shù)全部去掉,依此類推再把7的倍數(shù)全部去掉。這樣不斷的篩除,最后就把素?cái)?shù)剩下了。
可能說的比較抽象,我們用動圖來演示一下:
偽代碼如下
Input: an integer n > 1
Let A be an array of Boolean values, indexed by integers 2 to n,
initially all set to true.
for i = 2, 3, 4, ..., not exceeding √n:
if A[i] is true:
for j = i2, i2+i, i2+2i, i2+3i, ..., not exceeding n:
A[j] := false
Output: all i such that A[i] is true.
PS. Markdown 很好用