LeetCode 207. Course Schedule

There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

2, [[1,0],[0,1]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

大致意思就是給定我們一定數(shù)量的課程,以及課程間的先修關(guān)系,讓我們判斷是否可以修完所有課程。
該問題等價于判斷一個有向圖是否有環(huán),如果有環(huán),就無法對該有向圖進(jìn)行拓?fù)渑判?/a>,也就無法在滿足課程間的先修關(guān)系的前提下修完所有課程。
我們可以依次從每個頂點開始使用DFS進(jìn)行圖的搜索,一旦發(fā)現(xiàn)環(huán)即可斷定無法修完所有課程。為了提高效率,本算法加了一個回溯拆邊的操作,因為既然已經(jīng)確認(rèn)這條路徑上沒有環(huán),就不需要重復(fù)訪問了。
代碼如下:

public class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {

        boolean[] visited = new boolean[numCourses];    // 訪問標(biāo)志
        List<Integer>[] adj = new List[numCourses];     // 鄰接鏈表
        for(int i = 0; i < numCourses; i++)
            adj[i] = new ArrayList<Integer>();
        for(int i = 0; i < prerequisites.length; i++)   // 由偏序關(guān)系構(gòu)造鄰接鏈表
        {
            int curCourse = prerequisites[i][0];        
            int preCourse = prerequisites[i][1];        
            adj[preCourse].add(curCourse);
        }
        for(int i = 0; i < numCourses; i++) // 從每一個結(jié)為起點開始做DFS,每次循環(huán)visited數(shù)組元素均為false
        {
            if(!dfs(adj, visited, i))       // 任意一次DFS發(fā)現(xiàn)環(huán)均可斷定無法修完所有課程
                return false;
        }
        return true;
    }

    private boolean dfs(List<Integer>[] adj, boolean[] visited, int course){

        if(visited[course])     // 再次訪問訪問過的結(jié)點,有環(huán)
            return false;
        visited[course] = true;
        for (int i = 0; i < adj[course].size(); i++)
        {
            if(!dfs(adj, visited, adj[course].get(i)))
                return false;
            adj[course].remove(i);  // 未發(fā)現(xiàn)環(huán),依次拆掉走過的邊,避免再走這條路
        }
        visited[course] = false;    // 標(biāo)志復(fù)位,向上回溯
        return true;
    }
}

解決本題的另一種方法是使用BFS,以無需先修的課程為起點,根據(jù)課程間的偏序關(guān)系搜索其他課程,統(tǒng)計搜索到(修完)的課程數(shù),與總課程數(shù)進(jìn)行比較即可判斷是否可以修完所有課程,代碼如下:

public class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {

        List<Integer>[] adj = new List[numCourses];     // 鄰接鏈表
        for(int i = 0; i < numCourses; i++)
            adj[i] = new ArrayList<Integer>();
        int[] indegree = new int[numCourses];           // 入度,即所需先修課程數(shù)
        Queue<Integer> readyCourses = new LinkedList(); // 可修課程隊列
        int finishCount = 0;                            // 修完的課程數(shù)  

        for (int i = 0; i < prerequisites.length; i++)  // 由偏序關(guān)系構(gòu)造鄰接鏈表,并統(tǒng)計入度
        {
            int curCourse = prerequisites[i][0];        
            int preCourse = prerequisites[i][1];        
            adj[preCourse].add(curCourse);
            indegree[curCourse]++;
        }
        for (int i = 0; i < numCourses; i++) 
        {
            if (indegree[i] == 0) 
                readyCourses.offer(i);             // 無需先修的課程先入隊列
        }
        while (!readyCourses.isEmpty()) 
        {
            int course = readyCourses.poll();      // 出隊列,即修完該課程
            finishCount++;
            for (int nextCourse : adj[course]) 
            {
                indegree[nextCourse]--;
                if (indegree[nextCourse] == 0)     // 所有先修課程已修完,入隊列
                    readyCourses.offer(nextCourse);
            }
        }
        return finishCount == numCourses;
    }
}

推薦閱讀更多精彩內(nèi)容