目的
在時(shí)序分析時(shí),我們經(jīng)常需要將原始序列進(jìn)行差分,然后做出擬合或者預(yù)測(cè),最后還需要將擬合的或者預(yù)測(cè)的值恢復(fù)成原始序列。這里,使用Pandas的Series中的diff和cumsum函數(shù)可以方便的實(shí)現(xiàn)。
一次一階差分的恢復(fù)
import pandas as pd
time_series = pd.Series([2,4,3,5,6,7,4,5,6,3,2,4], index=pd.date_range(start='2000', periods=12, freq='a'))
time_series_diff = time_series.diff(1).dropna()
time_series_restored = pd.Series([time_series[0]], index=[time_series.index[0]]) .append(time_series_diff).cumsum()
time_series_restored
多次一階差分的恢復(fù)
time_series = pd.Series([2,4,3,5,6,7,4,5,6,3,2,4], index=pd.date_range(start='2000', periods=12, freq='a'))
time_series_diff = time_series
diff_times = 3
first_values = []
for i in range(1, diff_times+1):
first_values.append(pd.Series([time_series_diff[0]],index=[time_series_diff.index[0]]))
time_series_diff = time_series_diff.diff(1).dropna()
time_series_restored = time_series_diff
for first in reversed(first_values):
time_series_restored = first.append(time_series_restored).cumsum()
time_series_restored
原理
其實(shí)就是使用cumsum累計(jì)求和函數(shù)。保留每次一階差分前的第一個(gè)值,然后反序再加回來。
時(shí)序問題中,如果預(yù)測(cè)的是一階的增量,那么就需要恢復(fù)原始的序列。