注意力模型預(yù)測(cè)股票價(jià)格

概述

注意力模型已經(jīng)推出,在CV和NLP領(lǐng)域刮起一股旋風(fēng),尤其是兼顧整體與細(xì)節(jié),短期與長(zhǎng)期,在各種比賽上攻城掠地,本文將介紹一個(gè)用于處理時(shí)間序列的相關(guān)模型。探索注意力模型在股票市場(chǎng)的應(yīng)用,進(jìn)而對(duì)股票價(jià)格進(jìn)行預(yù)測(cè)。

說(shuō)明

  • 前端采用pytorch
  • 數(shù)據(jù)采用tushare
  • Encoder-Decoder模型

依賴(lài)

  • pytorch
  • Tushare
  • numpy

.Encoder-Decoder模型

所謂encoder-decoder模型,又叫做編碼-解碼模型。這是一種應(yīng)用于seq2seq問(wèn)題的模型。其需求來(lái)自于自然語(yǔ)言處理,因?yàn)樘幚碚Z(yǔ)言和語(yǔ)音的時(shí)候輸入長(zhǎng)度不定,輸出長(zhǎng)度也不一定,曾經(jīng)給訓(xùn)練帶來(lái)困難。而Encoder-Decoder的出現(xiàn)解決了這個(gè)問(wèn)題,成為不定長(zhǎng)輸出輸出的標(biāo)準(zhǔn)做法。那么seq2seq又是什么呢?簡(jiǎn)單的說(shuō),就是根據(jù)一個(gè)輸入序列x,來(lái)生成另一個(gè)輸出序列y。seq2seq有很多的應(yīng)用,例如翻譯,文檔摘取,問(wèn)答系統(tǒng)等等。在翻譯中,輸入序列是待翻譯的文本,輸出序列是翻譯后的文本;在問(wèn)答系統(tǒng)中,輸入序列是提出的問(wèn)題,而輸出序列是答案。
為了解決seq2seq問(wèn)題,有人提出了encoder-decoder模型,也就是編碼-解碼模型。所謂編碼,就是將輸入序列轉(zhuǎn)化成一個(gè)固定長(zhǎng)度的向量;解碼,就是將之前生成的固定向量再轉(zhuǎn)化成輸出序列。

Seq

編碼器

import torch
from torch import nn
from torch.autograd import Variable
import torch.nn.functional as F

ENCODER_HIDDEN_SIZE = 64
DECODER_HIDDEN_SIZE = 64
DRIVING = 'stocks/600600csv'
TARGET = 'stocks/600612.csv'

class AttnEncoder(nn.Module):

    def __init__(self, input_size, hidden_size, time_step):
        super(AttnEncoder, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.T = time_step

        self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=1)
        self.attn1 = nn.Linear(in_features=2 * hidden_size, out_features=self.T)
        self.attn2 = nn.Linear(in_features=self.T, out_features=self.T)
        self.tanh = nn.Tanh()
        self.attn3 = nn.Linear(in_features=self.T, out_features=1)
        #self.attn = nn.Sequential(attn1, attn2, nn.Tanh(), attn3)


    def forward(self, driving_x):
        batch_size = driving_x.size(0)
        # 尺寸 batch_size * time_step * hidden_size
        code = self.init_variable(batch_size, self.T, self.hidden_size)
        # 初始化隱藏狀態(tài)
        h = self.init_variable(1, batch_size, self.hidden_size)
        # 初始化LSTM cell狀態(tài)
        s = self.init_variable(1, batch_size, self.hidden_size)
        for t in range(self.T):
            # batch_size * input_size * (2 * hidden_size + time_step)
            x = torch.cat((self.embedding_hidden(h), self.embedding_hidden(s)), 2)
            z1 = self.attn1(x)
            z2 = self.attn2(driving_x.permute(0, 2, 1))
            x = z1 + z2
            # batch_size * input_size * 1
            z3 = self.attn3(self.tanh(x))
            if batch_size > 1:
                attn_w = F.softmax(z3.view(batch_size, self.input_size), dim=1)
            else:
                attn_w = self.init_variable(batch_size, self.input_size) + 1
            # batch_size * input_size
            weighted_x = torch.mul(attn_w, driving_x[:, t, :])
            _, states = self.lstm(weighted_x.unsqueeze(0), (h, s))
            h = states[0]
            s = states[1]

            # encoding result
            # batch_size * time_step * encoder_hidden_size
            code[:, t, :] = h

        return code

    def init_variable(self, *args):
        zero_tensor = torch.zeros(args)
        if torch.cuda.is_available():
            zero_tensor = zero_tensor.cuda()
        return Variable(zero_tensor)

    def embedding_hidden(self, x):
        return x.repeat(self.input_size, 1, 1).permute(1, 0, 2)

解碼器

class AttnDecoder(nn.Module):

    def __init__(self, code_hidden_size, hidden_size, time_step):
        super(AttnDecoder, self).__init__()
        self.code_hidden_size = code_hidden_size
        self.hidden_size = hidden_size
        self.T = time_step

        self.attn1 = nn.Linear(in_features=2 * hidden_size, out_features=code_hidden_size)
        self.attn2 = nn.Linear(in_features=code_hidden_size, out_features=code_hidden_size)
        self.tanh = nn.Tanh()
        self.attn3 = nn.Linear(in_features=code_hidden_size, out_features=1)
        self.lstm = nn.LSTM(input_size=1, hidden_size=self.hidden_size)
        self.tilde = nn.Linear(in_features=self.code_hidden_size + 1, out_features=1)
        self.fc1 = nn.Linear(in_features=code_hidden_size + hidden_size, out_features=hidden_size)
        self.fc2 = nn.Linear(in_features=hidden_size, out_features=1)

    def forward(self, h, y_seq):
        batch_size = h.size(0)
        d = self.init_variable(1, batch_size, self.hidden_size)
        s = self.init_variable(1, batch_size, self.hidden_size)
        ct = self.init_variable(batch_size, self.hidden_size)

        for t in range(self.T):
            # batch_size * time_step * (encoder_hidden_size + decoder_hidden_size)
            x = torch.cat((self.embedding_hidden(d), self.embedding_hidden(s)), 2)
            z1 = self.attn1(x)
            z2 = self.attn2(h)
            x = z1 + z2
            # batch_size * time_step * 1
            z3 = self.attn3(self.tanh(x))
            if batch_size > 1:
                beta_t = F.softmax(z3.view(batch_size, -1), dim=1)
            else:
                beta_t = self.init_variable(batch_size, self.code_hidden_size) + 1
            # batch_size * encoder_hidden_size
            ct = torch.bmm(beta_t.unsqueeze(1), h).squeeze(1)
            if t < self.T - 1:
                yc = torch.cat((y_seq[:, t].unsqueeze(1), ct), dim=1)
                y_tilde = self.tilde(yc)
                _, states = self.lstm(y_tilde.unsqueeze(0), (d, s))
                d = states[0]
                s = states[1]
        # batch_size * 1
        y_res = self.fc2(self.fc1(torch.cat((d.squeeze(0), ct), dim=1)))
        return y_res

    def init_variable(self, *args):
        zero_tensor = torch.zeros(args)
        if torch.cuda.is_available():
            zero_tensor = zero_tensor.cuda()
        return Variable(zero_tensor)

    def embedding_hidden(self, x):
        return x.repeat(self.T, 1, 1).permute(1, 0, 2)

數(shù)據(jù)集

先使用csv文件,等比賽結(jié)束后,更改數(shù)據(jù)

import numpy as np
import pandas as pd
import math

class Dataset:

    def __init__(self, driving_csv, target_csv, T, split_ratio=0.8, normalized=False):
        stock_frame1 = pd.read_csv(driving_csv)
        stock_frame2 = pd.read_csv(target_csv)
        if stock_frame1.shape[0] > stock_frame2.shape[0]:
            stock_frame1 = self.crop_stock(stock_frame1, stock_frame2['Date'][0]).reset_index()
        else:
            stock_frame2 = self.crop_stock(stock_frame2, stock_frame1['Date'][0]).reset_index()
        stock_frame1 = stock_frame1['Close'].fillna(method='pad')
        stock_frame2 = stock_frame2['Close'].fillna(method='pad')
        self.train_size = int(split_ratio * (stock_frame2.shape[0] - T - 1))
        self.test_size = stock_frame2.shape[0] - T  - 1 - self.train_size
        if normalized:
            stock_frame2 = stock_frame2 - stock_frame2.mean()
        self.X, self.y, self.y_seq = self.time_series_gen(stock_frame1, stock_frame2, T)
        #self.X = self.percent_normalization(self.X)
        #self.y = self.percent_normalization(self.y)
        #self.y_seq = self.percent_normalization(self.y_seq)

    def get_size(self):
        return self.train_size, self.test_size

    def get_num_features(self):
        return self.X.shape[1]

    def get_train_set(self):
        return self.X[:self.train_size], self.y[:self.train_size], self.y_seq[:self.train_size]

    def get_test_set(self):
        return self.X[self.train_size:], self.y[self.train_size:], self.y_seq[self.train_size:]

    def time_series_gen(self, X, y, T):
        ts_x, ts_y, ts_y_seq = [], [], []
        for i in range(len(X) - T - 1):
            last = i + T
            ts_x.append(X[i: last])
            ts_y.append(y[last])
            ts_y_seq.append(y[i: last])
        return np.array(ts_x), np.array(ts_y), np.array(ts_y_seq)

    def crop_stock(self, df, date):
        start = df.loc[df['Date'] == date].index[0]
        return df[start: ]

    def log_normalization(self, X):
        X_norm = np.zeros(X.shape[0])
        X_norm[0] = 0
        for i in range(1, X.shape[0]):
            X_norm[i] = math.log(X[i] / X[i-1])
        return X_norm

    def percent_normalization(self, X):
        if len(X.shape) == 2:
            X_norm = np.zeros((X.shape[0], X.shape[1]))
            for i in range(1, X.shape[0]):
                X_norm[i, 0] = 0
                X_norm[i] = np.true_divide(X[i] - X[i-1], X[i-1])
        else:
            X_norm = np.zeros(X.shape[0])
            X_norm[0] = 0
            for i in range(1, X.shape[0]):
                X_norm[i] = (X[i] - X[i-1]) / X[i]
        return X_norm

import argparse
import torch
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from torch import nn
from torch.autograd import Variable
from model import AttnEncoder, AttnDecoder
from dataset import Dataset
from torch import optim


class Trainer:

    def __init__(self, driving, target, time_step, split, lr):
        self.dataset = Dataset(driving, target, time_step, split)
        self.encoder = AttnEncoder(input_size=self.dataset.get_num_features(), hidden_size=ENCODER_HIDDEN_SIZE, time_step=time_step)
        self.decoder = AttnDecoder(code_hidden_size=ENCODER_HIDDEN_SIZE, hidden_size=DECODER_HIDDEN_SIZE, time_step=time_step)
        if torch.cuda.is_available():
            self.encoder = self.encoder.cuda()
            self.decoder = self.decoder.cuda()
        self.encoder_optim = optim.Adam(self.encoder.parameters(), lr)
        self.decoder_optim = optim.Adam(self.decoder.parameters(), lr)
        self.loss_func = nn.MSELoss()
        self.train_size, self.test_size = self.dataset.get_size()

    def train_minibatch(self, num_epochs, batch_size, interval):
        x_train, y_train, y_seq_train = self.dataset.get_train_set()
        for epoch in range(num_epochs):
            i = 0
            loss_sum = 0
            while (i < self.train_size):
                self.encoder_optim.zero_grad()
                self.decoder_optim.zero_grad()
                batch_end = i + batch_size
                if (batch_end >= self.train_size):
                    batch_end = self.train_size
                var_x = self.to_variable(x_train[i: batch_end])
                var_y = self.to_variable(y_train[i: batch_end])
                var_y_seq = self.to_variable(y_seq_train[i: batch_end])
                if var_x.dim() == 2:
                    var_x = var_x.unsqueeze(2)
                code = self.encoder(var_x)
                y_res = self.decoder(code, var_y_seq)
                loss = self.loss_func(y_res, var_y)
                loss.backward()
                self.encoder_optim.step()
                self.decoder_optim.step()
                # print('[%d], loss is %f' % (epoch, 10000 * loss.data[0]))
                loss_sum += loss.data[0]
                i = batch_end
            print('epoch [%d] finished, the average loss is %f' % (epoch, loss_sum))
            if (epoch + 1) % (interval) == 0 or epoch + 1 == num_epochs:
                torch.save(self.encoder.state_dict(), 'models/encoder' + str(epoch + 1) + '-norm' + '.model')
                torch.save(self.decoder.state_dict(), 'models/decoder' + str(epoch + 1) + '-norm' + '.model')

    def test(self, num_epochs, batch_size):
        x_train, y_train, y_seq_train = self.dataset.get_train_set()
        x_test, y_test, y_seq_test = self.dataset.get_test_set()
        y_pred_train = self.predict(x_train, y_train, y_seq_train, batch_size)
        y_pred_test = self.predict(x_test, y_test, y_seq_test, batch_size)
        plt.figure(figsize=(8,6), dpi=100)
        plt.plot(range(2000, self.train_size), y_train[2000:], label='train truth', color='black')
        plt.plot(range(self.train_size, self.train_size + self.test_size), y_test, label='ground truth', color='black')
        plt.plot(range(2000, self.train_size), y_pred_train[2000:], label='predicted train', color='red')
        plt.plot(range(self.train_size, self.train_size + self.test_size), y_pred_test, label='predicted test', color='blue')
        plt.xlabel('Days')
        plt.ylabel('Stock price of 600600.(¥)')
        plt.savefig('results/res-' + str(num_epochs) +'-' + str(batch_size) + '.png')


    def predict(self, x, y, y_seq, batch_size):
        y_pred = np.zeros(x.shape[0])
        i = 0
        while (i < x.shape[0]):
            batch_end = i + batch_size
            if batch_end > x.shape[0]:
                batch_end = x.shape[0]
            var_x_input = self.to_variable(x[i: batch_end])
            var_y_input = self.to_variable(y_seq[i: batch_end])
            if var_x_input.dim() == 2:
                var_x_input = var_x_input.unsqueeze(2)
            code = self.encoder(var_x_input)
            y_res = self.decoder(code, var_y_input)
            for j in range(i, batch_end):
                y_pred[j] = y_res[j - i, -1]
            i = batch_end
        return y_pred


    def load_model(self, encoder_path, decoder_path):
        self.encoder.load_state_dict(torch.load(encoder_path, map_location=lambda storage, loc: storage))
        self.decoder.load_state_dict(torch.load(decoder_path, map_location=lambda storage, loc: storage))

    def to_variable(self, x):
        if torch.cuda.is_available():
            return Variable(torch.from_numpy(x).float()).cuda()
        else:
            return Variable(torch.from_numpy(x).float())



def getArgParser():
    parser = argparse.ArgumentParser(description='Train the dual-stage attention-based model on stock')
    parser.add_argument(
        '-e', '--epoch', type=int, default=1,
        help='the number of epochs')
    parser.add_argument(
        '-b', '--batch', type=int, default=1,
        help='the mini-batch size')
    parser.add_argument(
        '-s', '--split', type=float, default=0.8,
        help='the split ratio of validation set')
    parser.add_argument(
        '-i', '--interval', type=int, default=1,
        help='save models every interval epoch')
    parser.add_argument(
        '-l', '--lrate', type=float, default=0.01,
        help='learning rate')
    parser.add_argument(
        '-t', '--test', action='store_true',
        help='train or test')
    parser.add_argument(
        '-m', '--model', type=str, default='',
        help='the model name(after encoder/decoder)'
    )
    return parser


if __name__ == '__main__':
    args = getArgParser().parse_args()
    num_epochs = args.epoch
    batch_size = args.batch
    split = args.split
    interval = args.interval
    lr = args.lrate
    test = args.test
    mname = args.model
    trainer = Trainer(DRIVING, TARGET, 10, split, lr)
    if not test:
        trainer.train_minibatch(num_epochs, batch_size, interval)
    else:
        encoder_name = 'models/encoder' + mname + '.model'
        decoder_name = 'models/decoder' + mname + '.model'
        trainer.load_model(encoder_name, decoder_name)
        trainer.test(mname, batch_size)

最近有比賽,比賽后將此模型優(yōu)化,加入點(diǎn)乘注意力等。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書(shū)系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,836評(píng)論 6 540
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,275評(píng)論 3 428
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人,你說(shuō)我怎么就攤上這事。” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 177,904評(píng)論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 63,633評(píng)論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 72,368評(píng)論 6 410
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 55,736評(píng)論 1 328
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,740評(píng)論 3 446
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 42,919評(píng)論 0 289
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,481評(píng)論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 41,235評(píng)論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,427評(píng)論 1 374
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,968評(píng)論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,656評(píng)論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 35,055評(píng)論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 36,348評(píng)論 1 294
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 52,160評(píng)論 3 398
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 48,380評(píng)論 2 379

推薦閱讀更多精彩內(nèi)容