import cv2
import numpy as np
cv2.namedWindow("Face_Detect") #定義一個窗口
cap=cv2.VideoCapture(0) #捕獲攝像頭圖像
success,frame=cap.read() #讀入第一幀
classifier=cv2.CascadeClassifier("C:/opencv-3.3.0/data/haarcascades/haarcascade_frontalface_alt.xml")
#定義人臉識別的分類數(shù)據(jù)集,需要自己查找,在opencv的目錄下,參考上面我的路徑
while success:#如果讀入幀正常
size=frame.shape[:2]
image=np.zeros(size,dtype=np.float16)
image=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
cv2.equalizeHist(image,image)
divisor=8
h,w=size
minSize=(int(w/divisor),int(h/divisor)) #像素一定是整數(shù),或者用w//divisor
faceRects=classifier.detectMultiScale(image,1.2,2,cv2.CASCADE_SCALE_IMAGE,minSize)
#人臉識別
if len(faceRects)> 0:
for faceRect in faceRects:
x,y,w,h=faceRect
cv2.circle(frame,(x+w//2,y+h//2),min(w//2,h//2),(255,0,0),2) #圓形輪廓
cv2.circle(frame,(x+w//4,y+2*h//5),min(w//8,h//8),(0,255,0),2) #左眼輪廓
cv2.circle(frame,(x+3*w//4,y+2*h//5),min(w//8,h//8),(0,255,0),2)#右眼輪廓
cv2.circle(frame,(x+w//2,y+2*h//3),min(w//8,h//8),(0,255,0),2) #鼻子輪廓
cv2.rectangle(frame, (x, y), (x+w, y+h), (0,0,255),2) #矩形輪廓
cv2.imshow("Face_Detect",frame)
#顯示輪廓
success,frame=cap.read()#如正常則讀入下一幀
c=chr(key&255)
if c in ['q','Q',chr(27)]:#如果鍵入‘q’退出循環(huán)
print('exit'\n)
break#退出循環(huán)
循環(huán)結(jié)束則清零
cap.release()
cv2.destroyAllWindows()