為什么ConcurrentHashMap的讀操作不需要加鎖?

為什么ConcurrentHashMap的讀操作不需要加鎖?

我們知道,ConcurrentHashmap(1.8)這個并發集合框架是線程安全的,當你看到源碼的get操作時,會發現get操作全程是沒有加任何鎖的,這也是這篇博文討論的問題——為什么它不需要加鎖呢?

ConcurrentHashMap的簡介

我想有基礎的同學知道在jdk1.7中是采用Segment + HashEntry + ReentrantLock的方式進行實現的,而1.8中放棄了Segment臃腫的設計,取而代之的是采用Node + CAS + Synchronized來保證并發安全進行實現。

  • JDK1.8的實現降低鎖的粒度,JDK1.7版本鎖的粒度是基于Segment的,包含多個HashEntry,而JDK1.8鎖的粒度就是HashEntry(首節點)
  • JDK1.8版本的數據結構變得更加簡單,使得操作也更加清晰流暢,因為已經使用synchronized來進行同步,所以不需要分段鎖的概念,也就不需要Segment這種數據結構了,由于粒度的降低,實現的復雜度也增加了
  • JDK1.8使用紅黑樹來優化鏈表,基于長度很長的鏈表的遍歷是一個很漫長的過程,而紅黑樹的遍歷效率是很快的,代替一定閾值的鏈表,這樣形成一個最佳拍檔

get操作源碼

  1. 首先計算hash值,定位到該table索引位置,如果是首節點符合就返回
  2. 如果遇到擴容的時候,會調用標志正在擴容節點ForwardingNode的find方法,查找該節點,匹配就返回
  3. 以上都不符合的話,就往下遍歷節點,匹配就返回,否則最后就返回null
//會發現源碼中沒有一處加了鎖
public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode()); //計算hash
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {//讀取首節點的Node元素
        if ((eh = e.hash) == h) { //如果該節點就是首節點就返回
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //hash值為負值表示正在擴容,這個時候查的是ForwardingNode的find方法來定位到nextTable來
        //eh=-1,說明該節點是一個ForwardingNode,正在遷移,此時調用ForwardingNode的find方法去nextTable里找。
        //eh=-2,說明該節點是一個TreeBin,此時調用TreeBin的find方法遍歷紅黑樹,由于紅黑樹有可能正在旋轉變色,所以find里會有讀寫鎖。
        //eh>=0,說明該節點下掛的是一個鏈表,直接遍歷該鏈表即可。
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {//既不是首節點也不是ForwardingNode,那就往下遍歷
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

get沒有加鎖的話,ConcurrentHashMap是如何保證讀到的數據不是臟數據的呢?

volatile登場

對于可見性,Java提供了volatile關鍵字來保證可見性有序性但不保證原子性
普通的共享變量不能保證可見性,因為普通共享變量被修改之后,什么時候被寫入主存是不確定的,當其他線程去讀取時,此時內存中可能還是原來的舊值,因此無法保證可見性。

  • volatile關鍵字對于基本類型的修改可以在隨后對多個線程的讀保持一致,但是對于引用類型如數組,實體bean,僅僅保證引用的可見性,但并不保證引用內容的可見性。。
  • 禁止進行指令重排序。

??背景:為了提高處理速度,處理器不直接和內存進行通信,而是先將系統內存的數據讀到內部緩存(L1,L2或其他)后再進行操作,但操作完不知道何時會寫到內存。

  • 如果對聲明了volatile的變量進行寫操作,JVM就會向處理器發送一條指令,將這個變量所在緩存行的數據寫回到系統內存。但是,就算寫回到內存,如果其他處理器緩存的值還是舊的,再執行計算操作就會有問題。
  • 在多處理器下,為了保證各個處理器的緩存是一致的,就會實現緩存一致性協議,當某個CPU在寫數據時,如果發現操作的變量是共享變量,則會通知其他CPU告知該變量的緩存行是無效的,因此其他CPU在讀取該變量時,發現其無效會重新從主存中加載數據。
    image

    總結下來
  • 第一:使用volatile關鍵字會強制將修改的值立即寫入主存;
  • 第二:使用volatile關鍵字的話,當線程2進行修改時,會導致線程1的工作內存中緩存變量的緩存行無效(反映到硬件層的話,就是CPU的L1或者L2緩存中對應的緩存行無效);
  • 第三:由于線程1的工作內存中緩存變量的緩存行無效,所以線程1再次讀取變量的值時會去主存讀取。

是加在數組上的volatile嗎?

    /**
     * The array of bins. Lazily initialized upon first insertion.
     * Size is always a power of two. Accessed directly by iterators.
     */
    transient volatile Node<K,V>[] table;

我們知道volatile可以修飾數組的,只是意思和它表面上看起來的樣子不同。舉個栗子,volatile int array[10]是指array的地址是volatile的而不是數組元素的值是volatile的.

用volatile修飾的Node

get操作可以無鎖是由于Node的元素val和指針next是用volatile修飾的,在多線程環境下線程A修改因為hash沖突修改結點的val或者新增節點的時候是對線程B可見的。

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    //可以看到這些都用了volatile修飾
    volatile V val;
    volatile Node<K,V> next;

    Node(int hash, K key, V val, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.val = val;
        this.next = next;
    }

    public final K getKey()       { return key; }
    public final V getValue()     { return val; }
    public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
    public final String toString(){ return key + "=" + val; }
    public final V setValue(V value) {
        throw new UnsupportedOperationException();
    }

    public final boolean equals(Object o) {
        Object k, v, u; Map.Entry<?,?> e;
        return ((o instanceof Map.Entry) &&
                (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                (v = e.getValue()) != null &&
                (k == key || k.equals(key)) &&
                (v == (u = val) || v.equals(u)));
    }

    /**
     * Virtualized support for map.get(); overridden in subclasses.
     */
    Node<K,V> find(int h, Object k) {
        Node<K,V> e = this;
        if (k != null) {
            do {
                K ek;
                if (e.hash == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
            } while ((e = e.next) != null);
        }
        return null;
    }
}

既然volatile修飾數組對get操作沒有效果那加在數組上的volatile的目的是什么呢?

其實就是為了使得Node數組在擴容的時候對其他線程具有可見性而加的volatile

總結

  • 在1.8中ConcurrentHashMap的get操作全程不需要加鎖,這也是它比其他并發集合比如hashtable、用Collections.synchronizedMap()包裝的hashmap;安全效率高的原因之一。
  • get操作全程不需要加鎖是因為Node的成員val是用volatile修飾的和數組用volatile修飾沒有關系。
  • 數組用volatile修飾主要是保證在數組擴容的時候保證可見性。
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,606評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,582評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,540評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,028評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,801評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,223評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,294評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,442評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,976評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,800評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,996評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,543評論 5 360
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,233評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,662評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,926評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,702評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,991評論 2 374

推薦閱讀更多精彩內容

  • 本文是我自己在秋招復習時的讀書筆記,整理的知識點,也是為了防止忘記,尊重勞動成果,轉載注明出處哦!如果你也喜歡,那...
    波波波先森閱讀 11,291評論 4 56
  • Java SE 基礎: 封裝、繼承、多態 封裝: 概念:就是把對象的屬性和操作(或服務)結合為一個獨立的整體,并盡...
    Jayden_Cao閱讀 2,127評論 0 8
  • 九種基本數據類型的大小,以及他們的封裝類。(1)九種基本數據類型和封裝類 (2)自動裝箱和自動拆箱 什么是自動裝箱...
    關瑋琳linSir閱讀 1,896評論 0 47
  • 今天給自己寫封情書,親愛的我,覺得自己很努力,夜深人靜的時候腦海里整理了一些東西,發現其實我只是看起來比較努力而...
    步步嬌閱讀 163評論 0 0
  • 青檸和陌客,不管是青檸還是陌客,也不管是陌客還是青檸。 青檸就是青色檸檬,如同那青色的外表,散發著不夠成熟的氣息,...
    青檸陌客閱讀 295評論 0 1