本篇介紹的“合并”算法,是為后面學習“歸并排序”的一個準備。合并算法是歸并排序中的一個子算法,請注意兩者之間的關系和差異。
之所以把它獨立成一篇,一方面是一旦了解了它再理解歸并排序就會簡單很多,另一方面是其本身就具有獨立性,可以解決很多常見問題,并不非得寄宿在歸并排序里面。
合并算法,就是將兩個已經各自排好序的序列,合并成一個排好序的大序列的方法。
經典應用
兩摞撲克牌
《算法導論》里面給出的例子就很好理解。還是拿撲克牌來說事:桌上有兩摞牌,面朝上,每摞都已經按照從小到大排好序了。那么如何把它們合并成一摞并排好序呢?
日常生活中其實還有很多類似的應用。比如校園里學生按身高由低到高排隊,偶爾會遇到兩隊合一隊的情況,要求合并后仍然按照由低到高的順序。
合并算法就是解決此類問題的最佳方法。以撲克牌為例,其基本步驟是:
- 1 比較兩堆牌最頂上的兩張牌,選最小的一張;
- 2 將其拿出來(此時該堆頂上將露出一張新牌),面朝下放到輸出堆(就是最終的那一大摞);
- 3 重復上面兩步,直到原來兩堆其中一個為空,此時將另一堆中的所有剩余的牌,直接面朝下放到輸出堆中。
假設最壞情況是兩摞牌要比到各自最后一張,此時算法時間復雜度是T(n) = Θ(n),這是因為整個算法最多只要遍歷一遍。
偽碼
接下來,用偽碼實現上面的思想,但有兩個額外的變化:
- 撲克應用中的兩摞牌已經排好序換一種表達方式:A是一個數組,p、q和r是數組下標,滿足p≤q<r,假設A[p ‥ q]和A[q+1 ‥ r]都已排好序。期望的輸出是:A的子數組A[p ‥ r]是通過合并原A[p ‥ q]和A[q+1 ‥ r]形成的且已排好序的子數組。
- 為了避免每次執行基本步驟都要檢查是否有堆為空,在每個堆的底部放置一張“哨兵”牌(哨兵通常包含一個特殊值,用于簡化代碼),值為∞。它可以保證直到兩堆牌都露出∞時,其他牌都已經放置到輸出堆。因為我們事先知道剛好r - p + 1張牌將被放置到輸出堆,所以一旦已執行r - p + 1個基本步驟,算法就可以停止了。
定義算法的名字為MERGE,偽碼如下:
MERGE(A, p, q, r)
1 n1 = q - p + 1
2 n2 = r - q
3 let L[1 ‥ n1+1] and R[1 ‥ n2+1] be new arrays
4 for i = 1 to n1
5 L[i] = A[p+i-1]
6 for j = 1 to n2
7 R[j] = A[q+j]
8 L[n1+1] = ∞
9 R[n2+1] = ∞
10 i = 1
11 j = 1
12 for k = p to r
13 if L[i] ≤ R[j]
14 A[k] = L[i]
15 i = i + 1
16 else A[k] = R[j]
17 j = j + 1
正確性證明
證明算法的正確性中提到:只要證明在初始、保持、和終止階段循環不變式都成立,從而可以通過終止時的不變式推斷出算法是正確的。
代碼中的12~17行是唯一的循環,循環不變式是什么呢?這里我們令輸出A[p ‥ k-1]作為循環不變式,迭代的任何過程中隨k的增加該數組總是按從小到大的順序包含原A[p ‥ r]中最小的元素,有如下證明:
- 初始化:循環第一次迭代之前,k = p,所以子數組A[p ‥ k-1]為空;
- 保持:即要證明某次迭代之前不變式為真,下次迭代之前不變式仍為真;
- 假設某次迭代前,L[i] ≤ R[j],此時L[i]是未被復制回數組A的最小元素;
- 與此同時,數組A[p ‥ k-1]包含k - p個最小元素,即迭代前不變式為真;
- 第14行代碼將L[i]復制到A[k]之后,子數組A[p ‥ k]將包含k - p + 1個最小元素。增加k的值(for循環)和i的值(第15行代碼)后,即為下次迭代前重新建立了該循環不變式;
- 反之,若L[i] > R[j],則第16~17代碼執行適當的操作來維持該循環不變式。
- 終止:終止時k = r + 1。子數組A[p ‥ k-1]就是A[p ‥ r]且按從小到大的順序包含了L[1 ‥ n1+1]和R[1 ‥ n2+1]中的k - p = r - p + 1個最小元素。數組L和R一共包含n1 + n2 + 2 = r - p + 3個元素,多出的2個就是哨兵,其他所有元素都已經被復制回數組A。
時間復雜度
前面提到過MERGE的時間復雜度是Θ(n),其中n = r - p + 1。再快速算下:
- 代碼13行和811行中的每行需要常量時間;
- 代碼4~7行的for循環需要Θ(n1+n2) = Θ(n)的時間;
- 代碼12~17行for循環有n次迭代,每次迭代需要常量時間。
Java實現
public class MergeSort {
public static void mergeInASC(int[] numbers, int p, int q, int r) throws Exception {
if(numbers.length < 2 || p > q || q >= r)
throw new Exception("Para error.");
int n1 = q - p + 1;
int n2 = r - q;
int[] L = new int[n1 + 1];
int[] R = new int[n2 + 1];
for(int i = 0; i < n1; i++){
L[i] = numbers[p + i];
}
for(int j = 0; j < n2; j++){
R[j] = numbers[q + 1 + j];
}
L[n1] = Integer.MAX_VALUE;
R[n2] = Integer.MAX_VALUE;
int i = 0;
int j = 0;
for(int k = p; k <= r; k++){
if(L[i] > R[j]){
numbers[k] = R[j];
j++;
}
else{
numbers[k] = L[i];
i++;
}
}
}
}
共享協議:署名-非商業性使用-禁止演繹(CC BY-NC-ND 3.0 CN)
轉載請注明:作者黑猿大叔(簡書)