圖的基本算法(BFS和DFS)

圖是一種靈活的數據結構,一般作為一種模型用來定義對象之間的關系或聯系。對象由頂點(V)表示,而對象之間的關系或者關聯則通過圖的邊(E)來表示。
圖可以分為有向圖和無向圖,一般用G=(V,E)來表示圖。經常用鄰接矩陣或者鄰接表來描述一副圖。
在圖的基本算法中,最初需要接觸的就是圖的遍歷算法,根據訪問節點的順序,可分為廣度優先搜索(BFS)和深度優先搜索(DFS)。


廣度優先搜索(BFS)
廣度優先搜索在進一步遍歷圖中頂點之前,先訪問當前頂點的所有鄰接結點。
a .首先選擇一個頂點作為起始結點,并將其染成灰色,其余結點為白色。
b. 將起始結點放入隊列中。
c. 從隊列首部選出一個頂點,并找出所有與之鄰接的結點,將找到的鄰接結點放入隊列尾部,將已訪問過結點涂成黑色,沒訪問過的結點是白色。如果頂點的顏色是灰色,表示已經發現并且放入了隊列,如果頂點的顏色是白色,表示還沒有發現
d. 按照同樣的方法處理隊列中的下一個結點。
基本就是出隊的頂點變成黑色,在隊列里的是灰色,還沒入隊的是白色。
用一副圖來表達這個流程如下:

1.初始狀態,從頂點1開始,隊列={1}
2.訪問1的鄰接頂點,1出隊變黑,2,3入隊,隊列={2,3,}
3.訪問2的鄰接結點,2出隊,4入隊,隊列={3,4}
4.訪問3的鄰接結點,3出隊,隊列={4}
5.訪問4的鄰接結點,4出隊,隊列={ 空}

從頂點1開始進行廣度優先搜索:

  1. 初始狀態,從頂點1開始,隊列={1}
  2. 訪問1的鄰接頂點,1出隊變黑,2,3入隊,隊列={2,3,}
  3. 訪問2的鄰接結點,2出隊,4入隊,隊列={3,4}
  4. 訪問3的鄰接結點,3出隊,隊列={4}
  5. 訪問4的鄰接結點,4出隊,隊列={ 空}
    結點5對于1來說不可達。
    上面的圖可以通過如下鄰接矩陣表示:
int maze[5][5] = {
    { 0, 1, 1, 0, 0 },
    { 0, 0, 1, 1, 0 },
    { 0, 1, 1, 1, 0 },
    { 1, 0, 0, 0, 0 },
    { 0, 0, 1, 1, 0 }
};

BFS核心代碼如下:

#include <iostream>
#include <queue>
#define N 5
using namespace std;
int maze[N][N] = {
    { 0, 1, 1, 0, 0 },
    { 0, 0, 1, 1, 0 },
    { 0, 1, 1, 1, 0 },
    { 1, 0, 0, 0, 0 },
    { 0, 0, 1, 1, 0 }
};
int visited[N + 1] = { 0, };
void BFS(int start)
{
    queue<int> Q;
    Q.push(start);
    visited[start] = 1;
    while (!Q.empty())
    {
        int front = Q.front();
        cout << front << " ";
        Q.pop();
        for (int i = 1; i <= N; i++)
        {
            if (!visited[i] && maze[front - 1][i - 1] == 1)
            {
                visited[i] = 1;
                Q.push(i);
            }
        }
    }
}
int main()
{
    for (int i = 1; i <= N; i++)
    {
        if (visited[i] == 1)
            continue;
        BFS(i);
    }
    return 0;
}

深度優先搜索(DFS)
深度優先搜索在搜索過程中訪問某個頂點后,需要遞歸地訪問此頂點的所有未訪問過的相鄰頂點。
初始條件下所有節點為白色,選擇一個作為起始頂點,按照如下步驟遍歷:
a. 選擇起始頂點涂成灰色,表示還未訪問
b. 從該頂點的鄰接頂點中選擇一個,繼續這個過程(即再尋找鄰接結點的鄰接結點),一直深入下去,直到一個頂點沒有鄰接結點了,涂黑它,表示訪問過了
c. 回溯到這個涂黑頂點的上一層頂點,再找這個上一層頂點的其余鄰接結點,繼續如上操作,如果所有鄰接結點往下都訪問過了,就把自己涂黑,再回溯到更上一層。
d. 上一層繼續做如上操作,知道所有頂點都訪問過。
用圖可以更清楚的表達這個過程:

1.初始狀態,從頂點1開始

2.依次訪問過頂點1,2,3后,終止于頂點3

3.從頂點3回溯到頂點2,繼續訪問頂點5,并且終止于頂點5

4.從頂點5回溯到頂點2,并且終止于頂點2

5.從頂點2回溯到頂點1,并終止于頂點1

6.從頂點4開始訪問,并終止于頂點4

從頂點1開始做深度搜索:

  1. 初始狀態,從頂點1開始
  2. 依次訪問過頂點1,2,3后,終止于頂點3
  3. 從頂點3回溯到頂點2,繼續訪問頂點5,并且終止于頂點5
  4. 從頂點5回溯到頂點2,并且終止于頂點2
  5. 從頂點2回溯到頂點1,并終止于頂點1
  6. 從頂點4開始訪問,并終止于頂點4

上面的圖可以通過如下鄰接矩陣表示:

int maze[5][5] = {
    { 0, 1, 1, 0, 0 },
    { 0, 0, 1, 0, 1 },
    { 0, 0, 1, 0, 0 },
    { 1, 1, 0, 0, 1 },
    { 0, 0, 1, 0, 0 }
};

DFS核心代碼如下(遞歸實現):

#include <iostream>
#define N 5
using namespace std;
int maze[N][N] = {
    { 0, 1, 1, 0, 0 },
    { 0, 0, 1, 0, 1 },
    { 0, 0, 1, 0, 0 },
    { 1, 1, 0, 0, 1 },
    { 0, 0, 1, 0, 0 }
};
int visited[N + 1] = { 0, };
void DFS(int start)
{
    visited[start] = 1;
    for (int i = 1; i <= N; i++)
    {
        if (!visited[i] && maze[start - 1][i - 1] == 1)
            DFS(i);
    }
    cout << start << " ";
}
int main()
{
    for (int i = 1; i <= N; i++)
    {
        if (visited[i] == 1)
            continue;
        DFS(i);
    }
    return 0;
}

非遞歸實現如下,借助一個棧:

#include <iostream>
#include <stack>
#define N 5
using namespace std;
int maze[N][N] = {
    { 0, 1, 1, 0, 0 },
    { 0, 0, 1, 0, 1 },
    { 0, 0, 1, 0, 0 },
    { 1, 1, 0, 0, 1 },
    { 0, 0, 1, 0, 0 }
};
int visited[N + 1] = { 0, };
void DFS(int start)
{
    stack<int> s;
    s.push(start);
    visited[start] = 1;
    bool is_push = false;
    while (!s.empty())
    {
        is_push = false;
        int v = s.top();
        for (int i = 1; i <= N; i++)
        {
            if (maze[v - 1][i - 1] == 1 && !visited[i])
            {
                visited[i] = 1;
                s.push(i);
                is_push = true;
                break;
            }
        }
        if (!is_push)
        {
            cout << v << " ";
            s.pop();
        }

    }
}
int main()
{
    for (int i = 1; i <= N; i++)
    {
        if (visited[i] == 1)
            continue;
        DFS(i);
    }
    return 0;
}

有的DFS是先訪問讀取到的結點,等回溯時就不再輸出該結點,也是可以的。算法和我上面的區別就是輸出點的時機不同,思想還是一樣的。DFS在環監測和拓撲排序中都有不錯的應用。

PS: 圖文均為本人原創,畫了好幾個小時,轉載注明出處,尊重知識勞動,謝謝~

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,527評論 6 544
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,687評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,640評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,957評論 1 318
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,682評論 6 413
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,011評論 1 329
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,009評論 3 449
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,183評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,714評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,435評論 3 359
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,665評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,148評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,838評論 3 350
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,251評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,588評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,379評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,627評論 2 380

推薦閱讀更多精彩內容