文本分類調研

持續更新中

Introduction

1. Definition

什么是文本分類,即我們常說的text classification,簡單的說就是把一段文本劃分到我們提前定義好的一個或多個類別。可以說是屬于document classification的范疇。
Input:
a document d
a fixed set of classes C = {c1, c2, ... , cn}
Output:
a predicted class ci from C

2. Some simple application

  1. spam detection
  2. authorship attribution
  3. age/gender identification
  4. sentiment analysis
  5. assigning subject categories, topics or genes
    ......

Traditional methods

1. Naive Bayes

two assumptions:

  1. Bag of words assumption:
    position doesn't matter
  2. Conditional independency:

to compute these probabilities:

add-one smoothing to prevent the situation in which we get zero:(you can add other number as well)

to deal with unknown/unshown words:

main features:

  1. very fast, low storage requirements
  2. robust to irrelevant features
  3. good in domains with many equally important features
  4. optimal if the indolence assumption hold
  5. lacks accuracy in general

2. SVM

cost function of SVM:

2. SVM decision boundary
when C is very large:

about kernel:

until now,it seems that the SVM are only applicable to two-class classification.

Comparing with Logistic regression:

while applying SVM and Logistic regression to text classification, all you need to do is to get the labeled data and find a proper way to represent the texts with vectors (you can use one-hot representation , word2vec, doc2vec ......)

Neural network methods

1. CNN

(1) the paper Convolutional Neural Networks for Sentence Classification which appeared in EMNLP 2014
(2) the paper A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification

The model uses multiple filters to obtain multiple features. These features form the penultimate layer and are passed to a fully connected softmax layer whose output is the probability distribution over labels.

For regularization we employ dropout on the penultimate layer with a constraint on l2-norms of the weight vectors. Dropout prevents co-adaptation of hidden units by randomly dropping out.

Pre-trained Word Vectors
We use the publicly available word2vec vectors that were trained on 100 billion words from Google News.

Results

There is simplified implementation using Tensorflow on Github:https://github.com/dennybritz/cnn-text-classification-tf

2. RNN

the paper Hierarchical Attention Networks for Document Classification which appeared in NAACL 2016

in this paper we test the hypothesis that better representations can be obtained by incorporating knowledge of document structure in the model architecture

  1. It is observed that different words and sentences in a documents are differentially informative.
  2. Moreover, the importance of words and sentences are highly context dependent.
    i.e. the same word or sentence may be dif- ferentially important in different context

Attention serves two benefits: not only does it often result in better performance, but it also provides in- sight into which words and sentences contribute to the classification decision which can be of value in applications and analysis

Hierarchical Attention Network

If you want to learn more about Attention Mechanisms:http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/

In the model they used the GRU-based sequence encoder.
1. Word Encoder:

2. Word Attention:

3. Sentence Encoder:

4. Sentence Attention:

5. Document Classification:
Because the document vector v is a high level representation of document d

j is the label of document d

Results

There is simplified implementation written in Python on Github:https://github.com/richliao/textClassifier

References

https://www.cs.cmu.edu/%7Ediyiy/docs/naacl16.pdf
https://www.cs.cmu.edu/%7Ediyiy/docs/naacl16.pdf
https://www.coursera.org/learn/machine-learning/home/
https://www.youtube.com/playlist?list=PL6397E4B26D00A269

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,106評論 6 542
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,441評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 178,211評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,736評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,475評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,834評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,829評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,009評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,559評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,306評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,516評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,038評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,728評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,132評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,443評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,249評論 3 399
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,484評論 2 379

推薦閱讀更多精彩內容

  • 唐風吹過宋室的夢 那一筆揮毫凌空 繡點了牡丹紅 蝶衣在月光下舞動 憶往事小敘如風 幾世情緣若斷流水 花飄香悲了誰 ...
    夜已空閱讀 179評論 0 4
  • 一個北方人真的被江浙的醉蟹醉倒了
    海岸線177閱讀 159評論 0 1
  • 枕上聽雨久未眠,心思輾轉幾時鼾? 雨下叮零聲如脆,靜賞仙樂醉音梵。 落花春雨惱春愁,新贊春暖又春寒。 何時心頭淋潔...
    me揮之即去閱讀 178評論 0 0
  • 周五,是兒子滿月后從姥姥姥爺、爺爺奶奶家游歷一圈后回樓上住的日子。 這小子已經習慣了爺爺奶奶家的環境,反而到了自己...
    此木無言閱讀 167評論 0 0