Android View的工作原理

ViewRoot和DecorView

DecorView作為頂級(jí)視圖,view的整個(gè)繪制流程將從DecorView開始進(jìn)行下發(fā),DecorView繼承FrameLayout,是一個(gè)ViewGroup。ViewRoot和DecorView的聯(lián)系將在另一篇文章中詳細(xì)闡述。這里只需要知道DecorView是作為一個(gè)起點(diǎn)開始整個(gè)View繪制的。

MeasureSpec

MeasureSpec是一個(gè)32位的int值,是用來存儲(chǔ)view規(guī)格的對(duì)象,這個(gè)對(duì)象中的內(nèi)容會(huì)影響到view的尺寸,當(dāng)然父容器的規(guī)格也會(huì)影響當(dāng)前view的尺寸,那先從MeasureSpec的構(gòu)成開始分析。

MeasureSpec組成

MeasureSpec是一個(gè)32位的int值,高2位表示SpecMode,低30位表示SpecSize,SpecMode是指測(cè)量模式,SpecSize是指view可能的大小。

public static int makeMeasureSpec(@IntRange(from = 0, to = (1 << MeasureSpec.MODE_SHIFT) - 1) int size,
                                          @MeasureSpecMode int mode) {
            if (sUseBrokenMakeMeasureSpec) {
                return size + mode;
            } else {
                return (size & ~MODE_MASK) | (mode & MODE_MASK);
            }
        }
public static int getMode(int measureSpec) {
            //noinspection ResourceType
            return (measureSpec & MODE_MASK);
        }
public static int getSize(int measureSpec) {
            return (measureSpec & ~MODE_MASK);
        }

MeasureSpec類中提供了拼裝和單獨(dú)拆分的方法,size和mode也分別是int類型,mode有三種類型:

UNSPECIFIED

Measure specification mode: The parent has not imposed any constrainton the child. It can be whatever size it wants.

父容器不對(duì)View有任何限制,要多大給多大。這種情況一般是系統(tǒng)內(nèi)部。

AT_MOST

Measure specification mode: The child can be as large as it wants up to the specified size.

子View可以按照自己的大小確定自身,但是不能超過父容器指定的最大大小。對(duì)應(yīng)wrap_contetn。

EXACTLY

Measure specification mode: The parent has determined an exact size for the child. The child is going to be given those bounds regardless of how big it wants to be.

父容器已經(jīng)知道view所需要的精確大小,不管子View有多大都會(huì)被限制為SpecSize的大小。對(duì)應(yīng)match_parent和準(zhǔn)確的數(shù)值。

MeasureSpec和LayoutParams

通過上邊分析不難發(fā)現(xiàn)控制view大小的是MeasureSpec,但是在編碼中我們對(duì)于View設(shè)置寬高的時(shí)候并沒有直接使用EXACTLY和AT_MOST,那么MeasureSpec和LayoutParams的對(duì)應(yīng)關(guān)系是怎樣的通過代碼來看:

private static int getRootMeasureSpec(int windowSize, int rootDimension) {
        int measureSpec;
        switch (rootDimension) {

        case ViewGroup.LayoutParams.MATCH_PARENT:
            // Window can't resize. Force root view to be windowSize.
            measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
            break;
        case ViewGroup.LayoutParams.WRAP_CONTENT:
            // Window can resize. Set max size for root view.
            measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST);
            break;
        default:
            // Window wants to be an exact size. Force root view to be that size.
            measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY);
            break;
        }
        return measureSpec;
    }

這段代碼是頂級(jí)DecorView的MeasureSpec的創(chuàng)建過程,可以看到ViewGroup.LayoutParams.MATCH_PARENT對(duì)應(yīng)的MeasureSpec.EXACTLY,大小為窗口大小。ViewGroup.LayoutParams.WRAP_CONTENT對(duì)應(yīng)的MeasureSpec.AT_MOST,大小為窗口大小,但不能超過窗口大小。給出固定數(shù)值的對(duì)應(yīng)MeasureSpec.EXACTLY,大小為給定的數(shù)值。
當(dāng)然上邊提到的MeasureSpec只是頂層View的,我們知道子View的大小不光由自身決定,父容器也會(huì)對(duì)子View的大小造成影響,那么父容器與子View是怎么共同作用決定子View的MeasureSpec的我們通過ViewGroup的getChildMeasureSpec代碼來看:

 public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
        int specMode = MeasureSpec.getMode(spec);
        int specSize = MeasureSpec.getSize(spec);

        int size = Math.max(0, specSize - padding);

        int resultSize = 0;
        int resultMode = 0;

        switch (specMode) {
        // Parent has imposed an exact size on us
        case MeasureSpec.EXACTLY:
            if (childDimension >= 0) {
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size. So be it.
                resultSize = size;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent has imposed a maximum size on us
        case MeasureSpec.AT_MOST:
            if (childDimension >= 0) {
                // Child wants a specific size... so be it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size, but our size is not fixed.
                // Constrain child to not be bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent asked to see how big we want to be
        case MeasureSpec.UNSPECIFIED:
            if (childDimension >= 0) {
                // Child wants a specific size... let him have it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size... find out how big it should
                // be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size.... find out how
                // big it should be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            }
            break;
        }
        //noinspection ResourceType
        return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
    }

可以看到上邊方法中父容器的狀態(tài)會(huì)影響子View,一個(gè)狀態(tài)一個(gè)狀態(tài)的來看。
先看父容器為MeasureSpec.EXACTLY:子View為固定數(shù)值時(shí),子View為MeasureSpec.EXACTLY+子view的數(shù)值。子View為L(zhǎng)ayoutParams.MATCH_PARENT時(shí),子View為MeasureSpec.EXACTLY+父容器size。子View為L(zhǎng)ayoutParams.WRAP_CONTENT時(shí),子View為MeasureSpec.AT_MOST+父容器size。
父容器為MeasureSpec.AT_MOST:子View為固定數(shù)值時(shí),子View為MeasureSpec.EXACTLY+子view的數(shù)值。子View為L(zhǎng)ayoutParams.MATCH_PARENT時(shí),子View為MeasureSpec.AT_MOST +父容器size。子View為L(zhǎng)ayoutParams.WRAP_CONTENT時(shí),子View為MeasureSpec.AT_MOST+父容器size。
父容器為MeasureSpec.UNSPECIFIED:子View為固定數(shù)值時(shí),子View為MeasureSpec.EXACTLY+子view的數(shù)值。子View為L(zhǎng)ayoutParams.MATCH_PARENT時(shí),子View為MeasureSpec.UNSPECIFIED +0或父容器size。子View為L(zhǎng)ayoutParams.WRAP_CONTENT時(shí),子View為MeasureSpec.UNSPECIFIED +0或父容器size。
為了便于查看用一個(gè)表格來展示

childLayoutParams EXACTLY AT_MOST UNSPECIFIED
dp/px EXACTLY+ childSize EXACTLY+ childSize EXACTLY+ childSize
match_parent EXACTLY+parentSize AT_MOST+parentSize UNSPECIFIED+0
wrap_content AT_MOST+parentSize AT_MOST+parentSize UNSPECIFIED+0

通過表格可以看到除去UNSPECIFIED這種特殊情況,當(dāng)子View設(shè)定了固定值的時(shí)候,都會(huì)使用子View的大小作為view的大小,當(dāng)子View為match_parent或wrap_content時(shí)都會(huì)按照父容器的大小設(shè)定,總是不大于父容器的大小。只是在父容器為EXACTLY和子View為match_parent時(shí)子View的SpecMode會(huì)為EXACTLY。
得到了MeasureSpec就可以設(shè)置具體的大小了。那么進(jìn)入到具體的view繪制過程。

Measure

measure過程是view確定其大小的過程,ViewGroup會(huì)遍歷子View的measure,遞歸的查看每個(gè)View,確定大小并最終確定自己的大小。

View的Measure

View的measure方法是一個(gè)final的方法不可被修改,方法中會(huì)先判斷一下view的寬高是否發(fā)生改變,來判斷是否調(diào)用onMeasure方法,寬高發(fā)生改變一定會(huì)調(diào)用onMeasure方法,所以view的measure的關(guān)鍵是onMeasure,那來看onMeasure方法的具體實(shí)現(xiàn):

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
                getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
    }

看到方法中會(huì)調(diào)用getDefaultSize的方法:

public static int getDefaultSize(int size, int measureSpec) {
        int result = size;
        int specMode = MeasureSpec.getMode(measureSpec);
        int specSize = MeasureSpec.getSize(measureSpec);

        switch (specMode) {
        case MeasureSpec.UNSPECIFIED:
            result = size;
            break;
        case MeasureSpec.AT_MOST:
        case MeasureSpec.EXACTLY:
            result = specSize;
            break;
        }
        return result;
    }

看到當(dāng)specMode為AT_MOST和EXACTLY時(shí),得到的大小就是specSize的大小,這是得到的大小并不一定是最終大小(劃重點(diǎn)),UNSPECIFIED這種情況下得到的size是通過(mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());得到的,這段代碼很好理解,當(dāng)View沒有設(shè)置背景時(shí),size就是mMinWidth,當(dāng)有背景時(shí)選擇mMinWidth和背景圖寬中大的作為最終size。
getSuggestedMinimumWidth方法得到的數(shù)值就是UNSPECIFIED情況下獲得的size二者都是getSuggestedMinimumWidth得到的返回值。
通過上面的代碼可以知道,View的高寬由measureSpec決定,當(dāng)重寫onMeasure方法的時(shí)候如果View設(shè)置的是wrap_content時(shí),可知如果不重寫那么就是父容器給的SpecSize也就等同于match_parent的大小,如果需要在wrap_content時(shí)給View一個(gè)大小需要重寫onMeasure方法給定一個(gè)數(shù)值當(dāng)作view的大小,這個(gè)值應(yīng)小于SpecSize的數(shù)值,最終通過setMeasuredDimension方法設(shè)置。

ViewGroup的measure過程

ViewGroup除了完成自身的measure過程還需要完成子View的measure,ViewGroup是一個(gè)抽象類,并沒有重寫onMeasure,但是提供了一個(gè)measureChildren方法來遍歷子View并measure每個(gè)子View。
來看下measureChildren方法:

protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
        final int size = mChildrenCount;
        final View[] children = mChildren;
        for (int i = 0; i < size; ++i) {
            final View child = children[i];
            if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
                measureChild(child, widthMeasureSpec, heightMeasureSpec);
            }
        }
    }

上邊方法會(huì)遍歷ViewGroup的每個(gè)子View,當(dāng)子View不為GONE時(shí)會(huì)調(diào)用measureChild方法。

 protected void measureChild(View child, int parentWidthMeasureSpec,
            int parentHeightMeasureSpec) {
        final LayoutParams lp = child.getLayoutParams();

        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom, lp.height);

        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
    }

這個(gè)方法中會(huì)調(diào)用getChildMeasureSpec方法,這個(gè)方法之前在分析MeasureSpec的時(shí)候分析過了,得到子View的MeasureSpec,調(diào)用child.measure方法,之后就會(huì)執(zhí)行view的measure,上邊的文章已經(jīng)分析過這個(gè)過程。
經(jīng)過measure的過程一個(gè)view的寬高也就基本確定了,如果需要獲取最終的寬高建議在onLayout方法中通過getMeasureWidth/Height獲取,因?yàn)樵谀承O端情況下view會(huì)多次measure。

layout過程

layout過程是ViewGroup來確定子View的位置的過程,layout會(huì)觸發(fā)自身的onLayout方法,在onLayout方法中遍歷子View并調(diào)用子View的layout方法,子View方法在調(diào)用其onLayout方法。先從View的layout方法看起。

public void layout(int l, int t, int r, int b) {
        if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
            onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
            mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
        }

        int oldL = mLeft;
        int oldT = mTop;
        int oldB = mBottom;
        int oldR = mRight;

        boolean changed = isLayoutModeOptical(mParent) ?
                setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);

        if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
            onLayout(changed, l, t, r, b);
            mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;

            ListenerInfo li = mListenerInfo;
            if (li != null && li.mOnLayoutChangeListeners != null) {
                ArrayList<OnLayoutChangeListener> listenersCopy =
                        (ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
                int numListeners = listenersCopy.size();
                for (int i = 0; i < numListeners; ++i) {
                    listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
                }
            }
        }

        mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
        mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
    }

layout通過setFrame方法來設(shè)置上下左右四個(gè)位置的坐標(biāo),setFrame方法把四個(gè)頂點(diǎn)的位置確定,這里如果寬高發(fā)生改變會(huì)調(diào)用sizeChange方法。當(dāng)設(shè)置完當(dāng)前view的頂點(diǎn),會(huì)調(diào)用onLayout方法,這個(gè)方法需要具體的view來進(jìn)行重寫,如果是ViewGroup的那么需要遍歷子View并調(diào)用他們的layout方法。

draw過程

draw過程相比較上兩個(gè)過程比較簡(jiǎn)單,直接看代碼:

 public void draw(Canvas canvas) {
        final int privateFlags = mPrivateFlags;
        final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
                (mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
        mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;

        /*
         * Draw traversal performs several drawing steps which must be executed
         * in the appropriate order:
         *
         *      1. Draw the background
         *      2. If necessary, save the canvas' layers to prepare for fading
         *      3. Draw view's content
         *      4. Draw children
         *      5. If necessary, draw the fading edges and restore layers
         *      6. Draw decorations (scrollbars for instance)
         */

        // Step 1, draw the background, if needed
        int saveCount;

        if (!dirtyOpaque) {
            drawBackground(canvas);
        }

        // skip step 2 & 5 if possible (common case)
        final int viewFlags = mViewFlags;
        boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
        boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
        if (!verticalEdges && !horizontalEdges) {
            // Step 3, draw the content
            if (!dirtyOpaque) onDraw(canvas);

            // Step 4, draw the children
            dispatchDraw(canvas);

            // Overlay is part of the content and draws beneath Foreground
            if (mOverlay != null && !mOverlay.isEmpty()) {
                mOverlay.getOverlayView().dispatchDraw(canvas);
            }

            // Step 6, draw decorations (foreground, scrollbars)
            onDrawForeground(canvas);

            // we're done...
            return;
        }

        /*
         * Here we do the full fledged routine...
         * (this is an uncommon case where speed matters less,
         * this is why we repeat some of the tests that have been
         * done above)
         */

        boolean drawTop = false;
        boolean drawBottom = false;
        boolean drawLeft = false;
        boolean drawRight = false;

        float topFadeStrength = 0.0f;
        float bottomFadeStrength = 0.0f;
        float leftFadeStrength = 0.0f;
        float rightFadeStrength = 0.0f;

        // Step 2, save the canvas' layers
        int paddingLeft = mPaddingLeft;

        final boolean offsetRequired = isPaddingOffsetRequired();
        if (offsetRequired) {
            paddingLeft += getLeftPaddingOffset();
        }

        int left = mScrollX + paddingLeft;
        int right = left + mRight - mLeft - mPaddingRight - paddingLeft;
        int top = mScrollY + getFadeTop(offsetRequired);
        int bottom = top + getFadeHeight(offsetRequired);

        if (offsetRequired) {
            right += getRightPaddingOffset();
            bottom += getBottomPaddingOffset();
        }

        final ScrollabilityCache scrollabilityCache = mScrollCache;
        final float fadeHeight = scrollabilityCache.fadingEdgeLength;
        int length = (int) fadeHeight;

        // clip the fade length if top and bottom fades overlap
        // overlapping fades produce odd-looking artifacts
        if (verticalEdges && (top + length > bottom - length)) {
            length = (bottom - top) / 2;
        }

        // also clip horizontal fades if necessary
        if (horizontalEdges && (left + length > right - length)) {
            length = (right - left) / 2;
        }

        if (verticalEdges) {
            topFadeStrength = Math.max(0.0f, Math.min(1.0f, getTopFadingEdgeStrength()));
            drawTop = topFadeStrength * fadeHeight > 1.0f;
            bottomFadeStrength = Math.max(0.0f, Math.min(1.0f, getBottomFadingEdgeStrength()));
            drawBottom = bottomFadeStrength * fadeHeight > 1.0f;
        }

        if (horizontalEdges) {
            leftFadeStrength = Math.max(0.0f, Math.min(1.0f, getLeftFadingEdgeStrength()));
            drawLeft = leftFadeStrength * fadeHeight > 1.0f;
            rightFadeStrength = Math.max(0.0f, Math.min(1.0f, getRightFadingEdgeStrength()));
            drawRight = rightFadeStrength * fadeHeight > 1.0f;
        }

        saveCount = canvas.getSaveCount();

        int solidColor = getSolidColor();
        if (solidColor == 0) {
            final int flags = Canvas.HAS_ALPHA_LAYER_SAVE_FLAG;

            if (drawTop) {
                canvas.saveLayer(left, top, right, top + length, null, flags);
            }

            if (drawBottom) {
                canvas.saveLayer(left, bottom - length, right, bottom, null, flags);
            }

            if (drawLeft) {
                canvas.saveLayer(left, top, left + length, bottom, null, flags);
            }

            if (drawRight) {
                canvas.saveLayer(right - length, top, right, bottom, null, flags);
            }
        } else {
            scrollabilityCache.setFadeColor(solidColor);
        }

        // Step 3, draw the content
        if (!dirtyOpaque) onDraw(canvas);

        // Step 4, draw the children
        dispatchDraw(canvas);

        // Step 5, draw the fade effect and restore layers
        final Paint p = scrollabilityCache.paint;
        final Matrix matrix = scrollabilityCache.matrix;
        final Shader fade = scrollabilityCache.shader;

        if (drawTop) {
            matrix.setScale(1, fadeHeight * topFadeStrength);
            matrix.postTranslate(left, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, top, right, top + length, p);
        }

        if (drawBottom) {
            matrix.setScale(1, fadeHeight * bottomFadeStrength);
            matrix.postRotate(180);
            matrix.postTranslate(left, bottom);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, bottom - length, right, bottom, p);
        }

        if (drawLeft) {
            matrix.setScale(1, fadeHeight * leftFadeStrength);
            matrix.postRotate(-90);
            matrix.postTranslate(left, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, top, left + length, bottom, p);
        }

        if (drawRight) {
            matrix.setScale(1, fadeHeight * rightFadeStrength);
            matrix.postRotate(90);
            matrix.postTranslate(right, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(right - length, top, right, bottom, p);
        }

        canvas.restoreToCount(saveCount);

        // Overlay is part of the content and draws beneath Foreground
        if (mOverlay != null && !mOverlay.isEmpty()) {
            mOverlay.getOverlayView().dispatchDraw(canvas);
        }

        // Step 6, draw decorations (foreground, scrollbars)
        onDrawForeground(canvas);
    }

源碼中的注釋已經(jīng)寫的很清楚了,draw分成六步,第一步會(huì)先繪制背景drawBackground;第二步調(diào)用自身的onDraw方法繪制自己;第三步dispatchDraw方法把draw事件傳遞給子View;第四步繪制自身前景onDrawForeground。

小結(jié)

到這里view的整體繪制流程已經(jīng)講解完,view的繪制分為measure,layout,draw,我們只需要重寫onMeasure,onLayout,onDraw方法。View和ViewGroup作為一種組合模式很巧妙的將view體系轉(zhuǎn)化成樹形結(jié)構(gòu),將每一個(gè)繪制流程一級(jí)一級(jí)的向下專遞,最終完成整個(gè)View的繪制。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。

推薦閱讀更多精彩內(nèi)容