Leetcode - Best Time to Buy and Sell Stock with Cooldown

My code:

public class Solution {
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length <= 1) {
            return 0;
        }
        
        int n = prices.length;
        int[] s0 = new int[n];
        int[] s1 = new int[n];
        int[] s2 = new int[n];
        
        s0[0] = 0;
        s1[0] = -prices[0];
        s2[0] = Integer.MIN_VALUE;
        
        for (int i = 1; i < n; i++) {
            s0[i] = Math.max(s0[i - 1], s2[i - 1]);
            s1[i] = Math.max(s0[i - 1] - prices[i], s1[i - 1]);
            s2[i] = s1[i - 1] + prices[i];
        }
        
        return Math.max(s0[n - 1], Math.max(s1[n - 1], s2[n - 1]));
    }
}

reference:
https://discuss.leetcode.com/topic/30680/share-my-dp-solution-by-state-machine-thinking/2

這道題目看了解釋后才做出來。我覺得上面的解釋說的很好。
這是一種新的DP類型。通過畫 狀態(tài)機(jī)來解決問題。
狀態(tài)機(jī)畫出來后,問題也就解決了。
只需要處理一些 corner case。
這道題目很像那個 robber 的題。他也是不能連續(xù)的偷。但是他是累加,這個有個買賣的先后關(guān)系,所以更難。
那道題目就兩個狀態(tài)。

s0 s1

s0 --> rest s0
s0 --> steal s1

s1 --> rest s0

s0[i] = max(s0[i - 1], s1[i - 1]);
s1[i] = s0[i - 1] + money[i];

My code:

public class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        else if (nums.length == 1) {
            return nums[0];
        }
        
        int n = nums.length;
        int[] s0 = new int[n + 1];
        int[] s1 = new int[n + 1];
        s0[0] = 0;
        s1[0] = 0;
        for (int i = 1; i <= n; i++) {
            s0[i] = Math.max(s0[i - 1], s1[i - 1]);
            s1[i] = s0[i - 1] + nums[i - 1];
        }
        
        return Math.max(s0[n], s1[n]);
    }
}

Anyway, Good luck, Richardo! -- 08/26/2016

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,362評論 6 537
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,013評論 3 423
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,346評論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,421評論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 72,146評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,534評論 1 325
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,585評論 3 444
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,767評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,318評論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 41,074評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,258評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,828評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,486評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,916評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,156評論 1 290
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,993評論 3 395
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 48,234評論 2 375

推薦閱讀更多精彩內(nèi)容