各種深度學(xué)習(xí)工具對(duì)比

參考文獻(xiàn)《Benchmarking State-of-the-Art Deep Learning Software Tools》

軟件:Caffe, CNTK, TensorFlow and Torch。

軟件對(duì)比:

測(cè)試代碼http://www.comp.hkbu.edu.hk/~chxw/dlbench/index.html?

Caffe: Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding” inProceedings of the 22nd ACM international conference on Multimedia, 2014, pp. 675–678.

CNTK: D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O. Kuchaiev, Y. Zhang, F. Seide, H. Wanget al., “An introduction to computational networks and the computational network toolkit” Technical report, Tech. Rep. MSR, Microsoft Research, 2014, 2014. research. microsoft. com/apps/pubs, Tech. Rep., 2014.

Tensorflow: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devinet al., “Tensorflow: Large scale machine learning on heterogeneous systems, 2015” Software available from tensorflow. org, vol. 1, 2015.

Torch: R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab like environment for machine learning” inBigLearn, NIPS Workshop, no. EPFL-CONF-192376, 2011.

矩陣計(jì)算:

Tensorflow -> Eigen

Caffe, CNTK, Torch -> OpenBlas

結(jié)論:

(1) In general, all tools do not scale well on many-core CPUs. The performance using 16 CPU cores is only slightly better than using 4 CPU cores.

(2) For FCNs and CNNs, all tools can achieve significant speedup by using contemporary GPUs. With GPUs, Caffe performs the best on FCNs while TensorFlow performs the best on CNNs.

(3) For RNNs, Torch and TensorFlow can achieve much better performance than CNTK on GPU. But on the other hand CNTK performs much better than Torch and TensorFlow on CPU.

(4) Among the three GPU platforms, GTX1080 always performs the best.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。

推薦閱讀更多精彩內(nèi)容