算法原理:
由于傳統(tǒng)KMeans算法的聚類結(jié)果易受初始聚類中心點(diǎn)選擇的影響,因此在傳統(tǒng)的KMeans算法的基礎(chǔ)上進(jìn)行改進(jìn)。
二分KMeans(Bisecting KMeans)算法的主要思想是:首先將所有點(diǎn)作為一個(gè)簇,然后將該簇一分為二。之后選擇能最大限度降低聚類代價(jià)函數(shù)(誤差平方和SSE)的簇劃分為兩個(gè)簇。以此進(jìn)行下去,直到簇的數(shù)目等于給定的數(shù)目K為止。
代碼實(shí)現(xiàn):
基于DataFrame
def bi_kmeans(data: 'DataFrame', K: int) -> 'DataFrame':
"""二分KMeans
data: data['embedding'] 輸入x的向量
K: 聚類類別數(shù)
"""
def sse(error):
"""計(jì)算誤差平方和"""
return np.square(np.linalg.norm(error))
def euclidean_dist(v1, v2):
"""計(jì)算兩個(gè)向量間的歐氏距離"""
return np.linalg.norm(v1 - v2)
def dist_from_center(label, embedding, cluster_center, offset=0):
"""計(jì)算每個(gè)元素與其類別中心的歐氏距離
offset: label的偏移量
return: float"""
center = cluster_center[label - offset]
dist = euclidean_dist(embedding, center)
return dist
# 初始化類的中心
cluster_center = [np.mean(data.embedding)]
# 初始化每個(gè)item的label和到聚類中心的距離
data['label'] = 0
data['dist_from_center'] = data.apply(lambda x: dist_from_center(x['label'], x['embedding'], cluster_center), axis=1)
# 當(dāng)前k小于給定K值時(shí)
k = 1
while k < K :
print('Current Cluster Number: {} >>>'.format(k))
# 計(jì)算當(dāng)前sse
total_sse = sse(data.dist_from_center)
sharp_drop = 0
# 遍歷當(dāng)前每個(gè)簇,將其一分為二,計(jì)算新的sse
keep_i = -1
for i in range(k):
# 第i簇?cái)?shù)據(jù)
group_i = data[data.label == i]
if group_i.shape[0] > 2:
pre_sse = sse(group_i.dist_from_center)
# 二分當(dāng)前簇
bi_kmeans = KMeans(n_clusters=2).fit(group_i.embedding.tolist())
# 更新label和dist
group_i['label'] = bi_kmeans.labels_
new_center = bi_kmeans.cluster_centers_
group_i['dist_from_center'] = group_i.apply(lambda x: dist_from_center(x['label'], x['embedding'], new_center), axis=1)
# 計(jì)算當(dāng)前sse
post_sse = sse(group_i.dist_from_center)
# sse下降程度
drop = pre_sse - post_sse
# 保留最大下降ssd的i
if drop > sharp_drop:
keep_i = i
sharp_drop = drop
# 選出待二分的數(shù)據(jù)
group_i = data[data.label == keep_i]
group_i_index = data[data.label == keep_i].index
# 二分,更新label
bi_kmeans = KMeans(n_clusters=2).fit(group_i.embedding.tolist())
group_i['label'] = bi_kmeans.labels_ + k
data.loc[group_i_index, 'label'] = bi_kmeans.labels_ + k
new_center = bi_kmeans.cluster_centers_
# 更新距中心距離
data.loc[group_i_index, 'dist_from_center'] = group_i.apply(lambda x: dist_from_center(x['label'], x['embedding'], new_center, offset=k), axis=1)
# 更新超出k的label為原有l(wèi)abel
k_plus_1_index = data[data.label == k + 1].index
data.loc[k_plus_1_index, 'label'] = keep_i
# 更新類別數(shù)
k += 1
return data