數(shù)據(jù)爬去之BS4

BeautifulSoup4

BeautifulSoup是一個(gè)HTML/XML的解析器,主要用于解析和提取HTML/XML數(shù)據(jù)。BeautifulSoup用來(lái)解析HTML比較簡(jiǎn)單,API非常人性化,支持CSS選擇器,Python標(biāo)準(zhǔn)庫(kù)中的HTML解析器,也支持lxml的XML解析器。


規(guī)則對(duì)比.jpg

安裝

pip install beautifulsoup4

使用

from bs4 import BeautifulSoup
html = '''
'''
soup = BeautifulSoup(html, 'lxml')
print(soup.title)

案例

from bs4 import BeautifulSoup
import random
import requests
import os
import time

__author__ = 'wangff'

class StewPic:
    def __init__(self, start_url, page):
        self.start_url = start_url
        self.page = page
        self.i = 1
        self.user_agent_list = [
            'Mozilla/5.0 (Windows NT 6.1; rv,2.0.1) Gecko/20100101 Firefox/4.0.1',
            'Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.8.131 Version/11.11',
            'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50',
            'Mozilla/5.0 (Windows NT 6.1; rv,2.0.1) Gecko/20100101 Firefox/4.0.1',
            'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.106 Safari/537.36',
            'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Maxthon/4.9.2.1000 Chrome/39.0.2146.0 Safari/537.36',
            'Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11',
            'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3',
            'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3',
            'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/532.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/532.3',
            'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5',
            'Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11',
        ]
        self.headers = {
            'User-Agent': random.choice(self.user_agent_list),
        }

    def get_url_list(self):
        url_list = [self.start_url.format(x) for x in range(1, self.page)]
        return url_list

    def get_item(self):
        url_list = self.get_url_list()

        for url in url_list:
            print(url)
            response = requests.get(url=url, headers=self.headers)
            # print(response.text)
            soup = BeautifulSoup(response.text, 'lxml')
            people_list = soup.select('div.ptw li div.c')
            for people in people_list:
                print(people.a['href'])
                self.into_personal(people.a['href'])
                # break
                time.sleep(random.randint(0, 3))
            # break

    def into_personal(self, url):
        _response = requests.get(url=url, headers=self.headers)
        if _response.text:
            soup = BeautifulSoup(_response.text, 'lxml')
            pic_url_list = soup.select('div.bm_c ul.ptw li a img')
            os.chdir(r'F:\airline stewardess')
            for pic_url in pic_url_list:
                print(pic_url['src'])
                self.download_pic(pic_url['src'])
                time.sleep(random.randint(0, 2))
        else:
            print('照片有誤!')

    def download_pic(self, url):
        response = requests.get(url=url, headers=self.headers)
        p = response.content

        try:
            with open(str(self.i) + '.jpg', 'ab') as f:
                f.write(p)
                f.close()
        except Exception as e:
            print(e)

        self.i += 1


if __name__ == '__main__':
    stewardss_pic = StewPic('http://www.kongjie.com/home.php?mod=space&do=album&view=all&page={}', 100)
    stewardss_pic.get_item()
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,412評(píng)論 6 532
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,514評(píng)論 3 416
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,373評(píng)論 0 374
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,975評(píng)論 1 312
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,743評(píng)論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,199評(píng)論 1 324
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,262評(píng)論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,414評(píng)論 0 288
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,951評(píng)論 1 336
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,780評(píng)論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,983評(píng)論 1 369
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,527評(píng)論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,218評(píng)論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,649評(píng)論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,889評(píng)論 1 286
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 51,673評(píng)論 3 391
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,967評(píng)論 2 374

推薦閱讀更多精彩內(nèi)容