Ubuntu下TensorFlow GPU版本的運行

運行tensorflow

在CUDA完成安裝之后,還需要添加環(huán)境變量,打開終端,輸入下面的命令:

export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
如果是64位系統(tǒng),輸入:
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
如果是32位系統(tǒng),輸入:
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

如果需要使用其中的內(nèi)置庫
export PYTHONPATH=$PYTHONPATH:/home/time/ImageNet/models-master

運行ResNet

ResNet的程序位于offical/resnet目錄下
假設ImageNet存放目錄為
/media/time/20162AC5162A9BB2/Thunder/ImageNet_TF

運行
python imagenet_main.py --data_dir='/media/time/20162AC5162A9BB2/Thunder/ImageNet_TF' --batch_size=16 --model_dir='./model_101Res/' --resnet_size=101

可以將上面的文件寫成批處理文件

export PYTHONPATH=$PYTHONPATH:/home/time/ImageNet/models-master
export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
python imagenet_main.py --data_dir='/media/time/20162AC5162A9BB2/Thunder/ImageNet_TF' --batch_size=256 --model_dir='./modelChkPt2/' --resnet_size=18

注意這里Image_main.py的參數(shù)

flags:

imagenet_main.py:
  -bs,--batch_size:
    Batch size for training and evaluation. When using multiple gpus, this is
    the
    global batch size for all devices. For example, if the batch size is 32 and
    there are 4 GPUs, each GPU will get 8 examples on each step.
    (default: '32')
    (an integer)
  --[no]clean:
    If set, model_dir will be removed if it exists.
    (default: 'false')
  -dd,--data_dir:
    The location of the input data.
    (default: '/tmp')
  -df,--data_format: <channels_first|channels_last>:
    A flag to override the data format used in the model. channels_first
    provides a
    performance boost on GPU but is not always compatible with CPU. If left
    unspecified, the data format will be chosen automatically based on whether
    TensorFlow was built for CPU or GPU.
  -ebe,--epochs_between_evals:
    The number of training epochs to run between evaluations.
    (default: '1')
    (an integer)
  -ed,--export_dir:
    If set, a SavedModel serialization of the model will be exported to this
    directory at the end of training. See the README for more details and
    relevant
    links.
  -hk,--hooks:
    A list of (case insensitive) strings to specify the names of training hooks.
      Hook:
        profilerhook
        loggingtensorhook
        examplespersecondhook
        loggingmetrichook
      Example: `--hooks ProfilerHook,ExamplesPerSecondHook`
    See official.utils.logs.hooks_helper for details.
    (default: 'LoggingTensorHook')
    (a comma separated list)
  -md,--model_dir:
    The location of the model checkpoint files.
    (default: '/tmp')
  -rs,--resnet_size: <18|34|50|101|152|200>:
    The size of the ResNet model to use.
    (default: '50')
  -rv,--resnet_version: <1|2>:
    Version of ResNet. (1 or 2) See README.md for details.
    (default: '2')
  -te,--train_epochs:
    The number of epochs used to train.
    (default: '100')
    (an integer)

使用Tensorboard

tensorboard --logdir=/home/time/ImageNet/models-master/official/resnet/model_101Res
可以啟動tensorboard觀察運行狀態(tài)

最后編輯于
?著作權歸作者所有,轉載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,505評論 6 533
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,556評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,463評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,009評論 1 312
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,778評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,218評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,281評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,436評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,969評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 40,795評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,993評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,537評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,229評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,659評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,917評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,687評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,990評論 2 374

推薦閱讀更多精彩內(nèi)容

  • 1說尊重的話 在人際交往中,最重要的是彼此尊重,你的口才可以不夠好,但必須要懂得說尊重的話。平時,你要文明用語;開...
    鹿偉倫閱讀 121評論 0 0
  • 過去已過去,未來已來; 愿我們在新風口,新態(tài)勢下, 保持永不止步的學習態(tài)度, 將自己打造成最出色的人
    辰寅閱讀 101評論 0 0