姓名:于川皓 學號:16140210089
轉載自:http://blog.csdn.net/xubin348484article/details/384847
【嵌牛導讀】:核反應堆[1],又稱為原子能反應堆或反應堆,是能維持可控自持鏈式核裂變反應,以實現核能利用的裝置。核反應堆通過合理布置核燃料,使得在無需補加中子源的條件下能在其中發生自持鏈式核裂變過程。嚴格來說,反應堆這一術語應覆蓋裂變堆、聚變堆、裂變聚變混合堆,但一般情況下僅指裂變堆。
【嵌牛鼻子】:核反應堆
【嵌牛提問】:核反應堆技術的特點?有什么應用?
【嵌牛正文】:
核反應堆
本詞條由“科普中國”百科科學詞條編寫與應用工作項目審核 。
核反應堆[1],又稱為原子能反應堆或反應堆,是能維持可控自持鏈式核裂變反應,以實現核能利用的裝置。核反應堆通過合理布置核燃料,使得在無需補加中子源的條件下能在其中發生自持鏈式核裂變過程。嚴格來說,反應堆這一術語應覆蓋裂變堆、聚變堆、裂變聚變混合堆,但一般情況下僅指裂變堆。
人類第一臺核反應堆由美國籍意大利著名物理學家恩利克·費米領導的小組于1942年12月(曼哈頓計劃期間)在世界頂級學府芝加哥大學建成,命名為芝加哥一號堆(Chicago Pile-1)[2]。該反應堆是采用鈾裂變鏈式反應,開啟了人類原子能時代,芝加哥大學也因此成為人類“原子能誕生地”。
中文名
核反應堆
外文名
Nuclear Reactor
別????名
原子能反應堆或反應堆
原????理
可控自持鏈式核裂變反應
主要構成物質
原子
領????域
核能
所屬學科
核化學
目錄
1歷史沿革
2理論研究
3原理
4類型
5組成結構
?慢化劑
?控制棒
?冷卻劑
?屏蔽層
?行波堆
6主要特點
7應用領域
8注意事項
9發展前景
歷史沿革
早在1929年,科克羅夫特就利用質子成功地實現了原子核的變換。但是,用質子引起核反應需要消耗非常多的能量,使質子與目標的原子核碰撞命中的機會也非常之少。[1]
1938年,德國人奧托·哈恩和休特洛斯二人成功地使中子和鈾原子發生了碰撞。這項實驗有著非常重大的意義,它不僅使鈾原子簡單地發生了分裂,而且裂變后總的質量減少,同時放出能量。尤其重要的是鈾原子裂變時,除裂變碎片之外還射出2至3個中子,這個中子又可以引起下一個鈾原子的裂變,從而發生連鎖反應。
1939年1月,用中子引起鈾原子核裂變的消息傳到費米的耳朵里,當時他已逃亡到美國哥倫比亞
人類第一座核反應堆的設計者:費米
大學,費米不愧是個天才科學家,他一聽到這個消息,馬上就直觀地設想了原子反應堆的可能性,開始為它的實現而努力。費米組織了一支研究隊伍,對建立原子反應堆問題進行徹底的研究。費米與助手們一起,經常通宵不眠地進行理論計算,思考反應堆的形狀設計,
有時還要親自去解決石墨材料的采購問題。
1942年12月2日曼哈頓計劃期間,費米的研究組人員全體集合在美國芝加哥大學Stagger Field 的一個巨大石墨型反應堆前面。這時由費米發出信號,緊接著從那座埋沒在石墨之間的7噸鈾燃料構成的巨大反應堆里,控制棒緩慢地被拔了出來,隨著計數器發出了咔嚓咔嚓的響聲,到控制棒上升到一定程度,計數器的聲音響成了一片,這說明連鎖反應開始了。這是人類第一次釋放并控制了原子能的時刻,這個反應堆被命名為“芝加哥一號堆"(Chicago Pile-1)。
1954年前蘇聯建成世界上第一座原子能發電站利用濃縮鈾作燃料,采用石墨水冷堆,電輸出功率為5000千瓦。1956年,英國也建成了原子能電站。原子能電站的發展并非一帆風順,不少人對核電站的放射性污染問題感到憂慮和恐懼,因此出現了反核電運動。其實,在嚴格的科學管理之下,原子能是安全的能源。原子能發電站周圍的放射性水平,同天然本底的放射性水平實際并沒有多大差別。
1979年3月,美國三里島原子能發電站由于操作錯誤和設備失靈,造成了原子能開發史上空前未有的嚴重事故。然而,由于反應堆的停堆系統、應急冷卻系統和安全殼等安全措施發揮了作用,結果放射性外逸量微乎其微,人和環境沒有受到什么影響,充分說明現代科技的發展已能保證原子能的安全利用。
理論研究
1972年5月,法國一座核燃料處理廠的一名工人
鈾礦
注意到了一個奇怪的現象。當時他正對一塊鈾礦石進行常規分析,這塊礦石采自一座看似普通的鈾礦。與所有的天然鈾礦一樣,該礦石含有3種鈾同位素──換句話說,其中的鈾元素以3種不同的形態存在,它們的原子量各不相同:含量最豐富的是鈾238;最稀少的是鈾234;而令人們垂涎三尺,能夠維持核鏈式反應(chain reaction)的同位素,則是鈾235。在地球上幾乎所有的地方,甚至在月球上或隕石中,鈾235同位素的原子數量在鈾元素總量中占據的比例始終都是0.720%。不過,在這些采自非洲加蓬的礦石樣品中,鈾235的含量僅有0.717%!盡管差異如此細微,卻引起了法國科學家的警惕,這其中一定發生過某種怪事。進一步的分析顯示,從該礦采來的一部分礦石中,鈾235嚴重缺斤短兩:大約有200千克不翼而飛——足夠制造6枚原子彈。
黑田和夫認為,自持裂變反應能夠發生的第一個條件就是,鈾礦礦脈的大小必須超過誘發裂變的中子在礦石中穿行的平均距離,也就是0.67米左右。這個條件可以保證,裂變的原子核釋放的中子在逃離礦脈之前,就能被其他鈾原子核吸收。
第二個必要條件是,鈾235必須足夠豐富。今天,即使是儲量最大、濃度最高的鈾礦礦脈也無法成為一座核反應堆,因為鈾235的濃度過低,甚至連1%都不到。不過這種同位素具有放射性,它的衰變速率比鈾238快大約6倍,因此在久遠的過去,這種更容易衰變的同位素所占的比例肯定高得多。例如,20億年前奧克羅鈾礦脈形成的時候,鈾235所占的比例接近3%,與當前大多數核電站中使用的、人工提純的濃縮鈾燃料的濃度大致相當。
第三個重要因素是,必須存在某種中子“慢化劑”(moderator),減慢鈾原子核裂變時釋放的中子的運動速度,從而使這些中子在誘使鈾原子核分裂時,更加得心應手。最終,礦脈中不能出現大量的硼、鋰或其他“毒素”,這些元素會吸收中子,因此可以令任何核裂變反應戛然而止。
最終,研究人員在奧克羅和鄰近的奧克羅班多地區的鈾礦中,確定了16個相互分離的區域——20億年前,那里的真實環境,居然與黑田和夫描繪的大致情況驚人地相似。盡管這些區域早在幾十年前就被全部辨認出來,但是遠古核反應堆運轉過程的種種細節,直到才被我和同事徹底揭開。
氫元素提供證據
重元素分裂產生的氫元素提供了確鑿無疑的證據:奧克羅鈾礦在20億年前確實發生過自持核裂變反應,而且持續時間長達數十萬年。
奧克羅的鈾異常情況被發現之后不久,物理學家就確定,天然的裂變反應導致了鈾235的損耗。一個重原子核一分為二時,會產生較輕的新元素。找到這些元素,就等于找到了核裂變確鑿無疑的證據。事實證明,這些分裂產物的含量如此之高,因此除了核鏈式反應以外,不可能存在其他任何解釋。這場鏈式反應很像1942年恩里科·費米(Enrico Fermi)及其同事所做的那場著名演示(當時他們建成了世界上第一座可控原子核裂變鏈反應堆),反應全靠自己的力量維持運轉,只是時間上提早了20億年。
如此令人震驚的發現公布后不久,世界各地的物理學家便開始研究這些天然核反應堆的證據,并在1975年加蓬首都利伯維爾的一次特別會議上,分享了他們關于“奧克羅現象”的研究成果。第二年,代表美國出席那次會議的喬治·A·考恩(George A. Cowan,順便提及,他是美國著名的圣菲研究所的創建者之一,至今仍是該研究所的成員)為《科學美國人》撰寫了一篇文章(參見1976年7月號喬治·A·考恩所著《天然核裂變反應堆》一文),文中他講解了當時的科學家對這些遠古核反應堆運行原理的猜測。
比如,考恩描述了钚239的形成過程——數量更加豐富的鈾238捕獲了鈾235裂變釋放的一些中子,轉變為鈾239,然后再釋放出兩個電子,轉化成钚239。在奧克羅鈾礦中,曾經產生過超過兩噸的钚239。不過這種同位素后來幾乎全都消失了(主要是通過天然的放射性衰變,钚239的半衰期為2.4萬年),一些钚自身也經歷了裂變,它所特有的裂變產物證明了這一點。這些輕元素豐富的含量讓科學家推測,裂變反應一定持續了幾十萬年之久。根據鈾235消耗的數量,他們計算出了反應堆釋放的總能量,大概相當于1,500萬千瓦的機器運轉一整年所消耗的能量;再結合一些其他的證據,就能推算出反應堆的平均輸出功率:不超過100千瓦,足夠維持幾十只烤箱的運作。
十幾座天然反應堆自發工作,并維持著適度的功率輸出,運轉了大約幾十萬年之久,這確實令人驚嘆。為什么這些礦脈沒有發生爆炸,沒有在核鏈式反應啟動后立即自我摧毀?是什么機制使它們擁有了必不可少的自我調節能力?這些反應堆是穩定運轉,還是間歇式發作?自奧克羅現象最初發現以來,這些問題遲遲得不到解答。實際上,最后一個問題困擾了人們長達30年之久,直到我和我在美國華盛頓大學圣路易斯分校的同事檢測了一塊來自這個神秘非洲鈾礦的礦石之后,謎底才被逐漸揭開。
惰性氣體揭露謎底
在奧克羅反應堆遺跡中,氙同位素的構成比例出現異常。找出這種異常的根源,就能揭開遠古核反應堆的運作之謎。
奧克羅的一個反應堆遺跡進行了研究,重點集中在對氙氣的分析方面。氙是一種較重的惰性氣體(inert gas),可以被礦物封存數十億年之久。氙有9種穩定同位素,由不同的核反應過程產生,含量各不相同。作為一種惰性氣體,它很難與其他元素形成化學鍵,因此很容易將它們提純,進行同位素分析。氙的含量非常稀少,科學家可以用它來探測和追溯核反應,甚至用來研究那些發生于太陽系形成之前的、原始隕石之中的核反應。
分析氙的同位素成分需要一臺質譜儀(mass spectrometer),它可以根據原子量(atomic weight)的不同而分離出不同的原子。我有幸可以使用一臺極其精確的氙質譜儀,那是我在華盛頓大學的同事查爾斯·M·霍恩貝格(Charles M. Hohenberg)制造的。不過在使用他的儀器之前,我們必須先把氙氣從樣品中提取出來。通常,科學家只須將寄主礦物加熱到它的熔點以上,巖石就會失去晶體結構,無法再保留內部儲藏的氙氣。為了獲得更多關于這種氣體起源和封存過程的信息,我們采取了一種更加精巧的方法——激光萃取法(laser extraction),它可以有針對性地從礦物樣品的個別顆粒中釋放出氙氣,而不會觸碰周圍其他的部分。
我們可以利用的唯一一塊奧克羅礦石碎塊僅有1毫米厚、4毫米寬,我們把這種技術應用到碎塊上的許多微小斑點之上。當然,我們首先需要決定將激光束聚焦到什么位置。在這方面,我和霍恩貝格得到了同事奧爾加·普拉夫迪夫切娃(Olga Pravdivtseva)的鼎力相助,她為我們的樣本拍攝了一張詳盡的X射線照片,識別出了候選的礦物。每次萃取之后,我們都會將得到的氣體提純,然后把氙氣放入霍恩貝格的質譜儀中,儀器會顯示出每一種同位素的原子數目。
氙氣出現的位置令我們大吃一驚,它并不像我們想象的那樣,大量分布在富含鈾元素的礦物顆粒之中,儲藏氙氣數量最多的竟然是根本不含鈾元素的磷酸鋁顆粒。非常明顯,在發現的所有天然礦物之中,這些顆粒中的氙濃度是最高的。第二個令人驚訝之處在于,與通常由核反應產生的氣體相比,萃取出來的氣體在同位素組成上有顯著的不同。核裂變一定會產生氙136和氙134,但在奧克羅礦石中,這兩種同位素似乎缺失嚴重,而其他較輕的氙同位素含量則變化不大。
同位素構成比例上的這種差異是如何產生的呢?化學反應無法提供答案,因為所有同位素的化學性質都完全相同。那么核反應,比如說中子俘獲過程(neutron capture),能不能給出解釋呢?經過仔細分析,我和同事們把這種可能性也排除了。我們還考慮過不同同位素的物理分選過程:較重的原子移動速度比較輕的原子稍慢一些,有時它們就會相互分離開來。鈾濃縮裝置就是利用這個過程來生產反應堆燃料的,不過需要相當高的技術水平才能建造出這樣的工業設備。即使自然界能夠奇跡般地在微觀尺度上創造出類似的“裝置”,仍然無法解釋我們所研究的磷酸鋁顆粒中混合在一起的氙同位素比例。舉例來說,如果確實發生過物理分選的話,考慮到現有的氙132的含量,氙136(比氙132重4個原子質量單位)的缺失,應該是氙134(比氙132重2個原子質量單位)的兩倍。但實際上,我們并沒有看到那樣的模式。
絞盡腦汁之后,我們終于想通了產生氙同位素構成比例異常的原因。我們所測量的所有氙同位素都不是鈾裂變的直接產物。相反,它們是放射性碘同位素衰變的產物,碘則由放射性碲衰變而來,而碲又由別的元素衰變產生,這是一個著名的核反應序列,最終的產物才是穩定的氙氣。
我們的突破點在于,我們意識到奧克羅樣品中不同的氙同位素產生于不同的時期,它們所遵循的時間表由它們的母元素碘和再上一代的元素碲的半衰期所決定。某種特定的放射性前體(precursor,即一系列反應過程的中間產物)存在的時間越長,它們形成氙的過程就被拖延得越久。例如,在奧克羅的自持裂變反應開始后,氙136僅過了大約1分鐘就開始生成;一個小時后,稍輕一些的穩定同位素氙134出現;接下來,在裂變開始的若干天后,氙132和氙131登場亮相;最終,幾百萬年之后,氙129才得以形成——此時,核鏈式反應早已停止很久了。
如果奧克羅礦脈一直處于封閉狀態,那么在它的天然反應堆運轉期間積聚起來的氙氣,就會保持核裂變所產生的正常同位素比例,并一直保存至今。但是,科學家沒有理由認為,這個系統會是封閉的。實際上,有充分的原因讓人猜想,它不是封閉的。奧克羅反應堆可以通過某種方式自行調節核反應,這個簡單的事實提供了間接的證據。最可能的調節機制與地下水的活動有關:當溫度達到某個臨界點時,水會被煮沸蒸發掉。水在核鏈式反應中起到了中子慢化劑的作用,如果水不見了,核鏈式反應就會暫時停止。只有當溫度下降,足夠的地下水再次滲入之后,反應區域才會繼續開始發生裂變。
這種關于奧克羅反應堆如何運轉的說法強調了兩個要點:第一,核反應很可能以某種方式時斷時續地發生;第二,必定有大量的水流過這些巖石——足夠沖洗掉一些氙的前體,比如可溶于水的碲和碘。水的存在有助于解釋這樣一個問題:為什么大多數氙當前留存于磷酸鋁顆粒中,而沒有出當前富含鈾元素的礦物里——要知道,裂變反應最初是在這里生成那些放射性前體的。氙氣不會簡單地從一組早已存在的礦物中遷移到另一組礦物里——在奧克羅反應堆開始運轉之前,磷酸鋁礦物很可能還不存在。實際上,那些磷酸鋁顆粒可能是就地形成的,一旦被核反應加熱的水冷卻到300℃左右,磷酸鋁顆粒就會形成。
在奧克羅反應堆運轉的每個活躍期和隨后溫度仍然很高的一段時間里,大量的氙氣(包括形成速度相對較快的氙136和氙134)會被趕走。等到反應堆冷卻時,半衰期更長的氙前體(也就是最后會產生含量比較豐富的氙132、氙131和氙129的放射性前體)則會優先與正在形成的磷酸鋁顆粒結合起來。隨著更多的水回到反應區域,中子被適當地慢化,裂變反應再度恢復,使這種加熱和冷卻的循環周而復始地重復下去。由此產生的結果,就是我們所觀察到的、奇特的氙同位素構成比例。
什么力量能讓氙氣在磷酸鋁礦物中留存20億年之久呢?再進一步,為什么在某次反應堆運轉期間產生的氙氣,沒有在下一次運轉期間被清除呢?對于這些問題,我們還沒有找到確切的答案。據推測,氙可能被囚禁在磷酸鋁礦物的籠狀結構中,這種結構即使在很高的溫度下,也能夠容納籠中產生的氙氣。盡管具體細節仍不清楚,但不管最終的答案如何,有一點是明確無誤的:磷酸鋁俘獲氙氣的能力真是令人驚嘆。
間歇式核反應堆
遠古核反應堆猶如今天的間歇泉,有著天然形成的自我調節機制。它們在核廢料處置和基礎物理研究方面,給科學家們提供了全新的思路。
在搞清了觀測到的氙同位素在磷酸鋁中產生的基本過程之后,我和我的同事們試圖從數學上為這個過程建立一個模型。這個計算揭示了有關反應堆運轉時間的更多信息,所有的氙同位素都提供了大致相同的答案。我們研究的那個奧克羅反應堆每次“開啟”30分鐘,然后再“關閉”至少2.5小時。這樣的模式猶如我們所看到的一些間歇泉,先是緩慢地加熱,然后在一場壯觀的噴發中將積蓄的地下水統統蒸騰而出,接著再重新蓄水,開始新一輪循環,日復一日、年復一年地持續下去。這種相似性支持了這樣的觀點:流經奧克羅礦脈的地下水不僅充當著中子慢化劑的角色,還不時會被蒸發殆盡,形成保護這些天然反應堆不至于自我摧毀的調節機制。在這方面,這種調節機制十分有效,數十萬年間沒有發生一次熔毀或爆炸事件。
人們大概會設想,從事核電工業的工程師也許能在奧克羅學到一兩樣本事。他們確實能學到東西,不過不一定是有關反應堆設計的,更重要的也許是處置核廢料的方法。畢竟,奧克羅就像一個地質儲藏室那樣運轉了如此漫長的時間,這就是科學家要細致入微地進行調查的原因,他們想知道裂變的各種產物如何從這些天然核反應堆中遷移出來。他們還仔細檢查了另一處類似的遠古核裂變區域,這個地點是通過勘探鉆井發現的,位于大約35千米以外的一個叫作班哥貝(Bangombe)的地方。班哥貝反應堆之所以特別引人注目,是因為它的埋藏位置比奧克羅及奧克羅班多地區的露天鈾礦更淺,因此有更多的水流過那里。總之,調查得出的結論令我們信心倍增:多種危險的核廢料都能夠成功地被隔離于地下。
奧克羅還演示了一種方法,能夠儲存那些一度被認為肯定會對環境造成污染的核廢料。自從核能發電問世以來,核電站產生的大量放射性氙135、氪85和其他惰性氣體,都被釋放到大氣之中。天然裂變反應堆表明,磷酸鋁礦物擁有一種獨一無二的能力,能夠俘獲和儲存這些氣體廢料達幾十億年之久,把這些廢氣封存在這種礦物之中也許是可行的。
奧克羅反應堆還向科學家們透露了這樣的訊息:他們曾經認定為基本物理常數的α(阿爾法,控制著諸如光速這樣的宇宙參數),可能曾發生過改變。過去30年來,發生在20億年前的奧克羅現象一直被用來駁斥α曾經發生過改變的觀點。但是2005年,美國洛斯阿拉莫斯國家實驗室的史蒂文·K·拉蒙諾(Steven K. Lamoreaux)和賈斯廷·R·托格森(Justin R. Torgerson)卻根據奧克羅現象推斷,這一“常數”確實發生了明顯改變(而且十分奇怪的是,他們得出的常數改變方向與其他人得出的結論相反)。對于拉蒙諾和托格森的計算來說,奧克羅運轉過程的一些細節十分關鍵,從這個角度上來講,我和我的同事們所做的工作,也許有助于闡明這個復雜的問題。
加蓬的這些遠古反應堆是地球曾經出現過的唯一天然反應堆嗎?20億年前,自持裂變所需的條件并不十分罕見,有朝一日,我們或許能夠發現其他的天然反應堆。我想,一絲泄露天機的氙氣,將給這項搜尋工作帶來極大的幫助。
原理
核反應堆原理
核反應堆是核電站的心臟[1],它的工作原理是這樣的:
原子由原子核與核外電子組成。原子核由質子與中子組成。當鈾235的原子核受到外來中子轟擊時,一個原子核會吸收一個中子分裂成兩個質量較小的原子核,同時放出2—3個中子。這裂變產生的中子又去轟擊另外的鈾235原子核,引起新的裂變。如此持續進行就是裂變的鏈式反應。鏈式反應產生大量熱能。用循環水(或其他物質)帶走熱量才能避免反應堆因過熱燒毀。導出的熱量可以使水變成水蒸氣,推動汽輪機發電。由此可知,核反應堆最基本的組成是裂變原子核+載熱體。但是只有這兩項是不能工作的。因為,高速中子會大量飛散,這就需要使中子慢化增加與原子核碰撞的機會;核反應堆要依人的意愿決定工作狀態,這就要有控制設施;鈾及裂變產物都有強放射性,會對人造成傷害,因此必須有可靠的防護措施;核反應堆發生事故時,要防止各種事故工況下輻射泄漏,所以反應堆還需要各種安全系統。綜上所述,核反應堆的合理結構應該是:核燃料+慢化劑+載熱體+控制設施+防護裝置+安全設施。
還需要說明的是,鈾礦石不能直接做核燃料。鈾礦石要經過精選、碾碎、酸浸、濃縮等程序,制成有一定鈾含量、一定幾何形狀的鈾棒或者球狀燃料才能參與反應堆工作。
類型
核反應堆內部
根據用途,核反應堆可以分為以下幾種類型[4]
①將中子束用于實驗或利用中子束的核反應,包括研究堆、材料實驗等。
②生產放射性同位素的核反應堆。
③生產核裂變物質的核反應堆,稱為生產堆。
④提供取暖、海水淡化、化工等用的熱量的核反應堆,比如多目的堆。
⑤為發電而發生熱量的核反應,稱為發電堆。
⑥用于推進船舶、飛機、火箭等到的核反應堆,稱為動力堆。
另外,核反應堆根據燃料類型分為天然鈾堆、濃縮鈾堆、釷堆;根據中子能量分為快中子堆和熱中子堆;根據冷卻劑(載熱劑)材料分為水冷堆、氣冷堆、有機液冷堆、液態金屬冷堆;根據慢化劑分 為石墨堆、水冷堆、有機堆、熔鹽堆、鈉冷堆;根據中子通量分為高通量堆和一般能量堆;根據熱工狀態分為沸騰堆、非沸騰堆、壓水堆;根據運行方式分為脈沖堆和穩態堆,等等。核反應堆概念上可有900多種設計,但現實上非常有限。
按照歷史年代分類
前蘇聯于1954年建成了世界上第一座原子能發電站,掀開了人類和
核反應堆透視圖
平利用原子能的新的一頁。英國和美國分別于1956年和1959年建成原子能發電站。到2004.9.28,在世界上31個國家和地區,有439座發電用原子能反應堆在運行,總容量為364.6百萬千瓦,約占世界發電總容量的16%。其中,法國建成59座發電用原子能反應堆,原子能發電量占其整個發電量的78%;日本建成54座,原子能發電量占其整個發電量的25%;美國建成104座,原子能發電量占其整個發電量的20%;俄羅斯建成29座,原子能發電量占其整個發電量的15%。我國于1991年建成第一座原子能發電站,包括這一座在內,當前投入運行的有9座發電用原子能反應堆,總容量為660萬千瓦。我國另有2座反應堆在建設中。我國還為巴基斯坦建成一座原子能發電站。
第一代(GEN-I)核電站是早期的原型堆電站,即1950年至1960年前期開發的輕水堆(light water reactors,LWR)核電站,如美國的希平港(Shippingport)壓水堆(pressurized-water reactor,PWR)、德累斯頓(Dresden)沸水堆(boiling water reactor,BWR)以及英國的鎂諾克斯(Magnox)石墨氣冷堆等。
第二代(GEN-Ⅱ)核電站是1960年后期到1990年前期在第一代核電站基礎上開發建設的大型商用核電站,如LWR(PWR,BWR)、加拿大坎度堆(CANDU)、蘇聯的壓水堆VVER/RBMK等。到1998年為止,世界上的大多數核電站都屬于第二代核電站。
第三代(GEN-Ⅲ)是指滿足更高的安全性指標的先進核電站,要求安全性指標達到URD的要求。第三代核電站采用標準化、最佳化設計和安全性更高的非能動安全系統,如先進的沸水堆(advanced boiling water reactors,ABWR)、系統80+、AP600、歐洲壓水堆(European pressurized reactor,EPR)等。
第四代(GEN-Ⅳ)是待開發的安全性更高的核電站,其目標是到2030年達到實用化的程度,主要特征是經濟性高(與天燃氣火力發電站相當)、安全性好、廢物產生量小,并能防止核擴散。
2002年9月19日至20日在東京召開的GIF(第四代核能系統國際論壇Generation IV International Forum,GIF)會議上,與會的10個國家在94個概念堆的基礎上,一致同意開發以下六種第四代核電站概念堆系統。
按照冷卻方式分類
氣冷快堆
氣冷快堆(gas-cooled fast reactor,GFR)系統是快中子譜氦冷反應堆,采用閉式燃料循環,燃料可選擇復合陶瓷燃料。它采用直接循環氦氣輪機發電,或采用其工藝熱進行氫的熱化學生產。通過綜合利用快中子譜與錒系元素的完全再循環,GFR能將長壽命放射性廢物的產生量降到最低。此外,其快中子譜還能利用現有的裂變材料和可轉換材料(包括貧鈾)。參考反應堆是288兆瓦的氦冷系統,出口溫度為850℃。
液態金屬冷卻快堆
鉛合金液態金屬冷卻快堆(lead-cooled fast reactor,LFR)系統是快中子譜鉛(鉛/鉍共晶)液態金屬冷卻堆,采用閉式燃料循環,以實現可轉換鈾的有效轉化,并控制錒系元素。燃料是含有可轉換鈾和超鈾元素的金屬或氮化物。
LFR系統的特點是可在一系列電廠額定功率中進行選擇,例如LFR系統可以是一個1200兆瓦的大型整體電廠,也可以選擇額定功率在300~400兆瓦的模塊系統與一個換料間隔很長(15~20年)的50~100兆瓦的組合。LFR是一個小型的工廠制造的交鑰匙電廠,可滿足市場上對小電網發電的需求。
液態鈉冷卻快堆(sodium-cooled fast reactor,SFR)系統是快中子譜鈉冷堆,它采用可有效控制錒系元素及可轉換鈾的轉化的閉式燃料循環。SFR系統主要用于管理高放射性廢棄物,尤其在管理钚和其他錒系元素方面。該系統有兩個主要方案:中等規模核電站,即功率為150~500兆瓦,燃料用鈾-钚-次錒系元素-鋯合金;中到大規模核電站,即功率為500~1 500兆瓦,使用鈾-钚氧化物燃料。
該系統由于具有熱響應時間長、冷卻劑沸騰的裕度大、一回路系統在接近大氣壓下運行,并且該回路的放射性鈉與電廠的水和蒸汽之間有中間鈉系統等特點,因此安全性能好。
熔鹽堆系
熔鹽反應堆(molten salt reactor,MSR)系統是超熱中子譜堆,燃料是鈉、鋯和氟化鈾的循環液體混合物。熔鹽燃料流過堆芯石墨通道,產生超熱中子譜。MSR系統的液體燃料不需要制造燃料元件,并允許添加钚這樣的錒系元素。錒系元素和大多數裂變產物在液態冷卻劑中會形成氟化物。熔融的氟鹽具有很好的傳熱特性,可降低對壓力容器和管道的壓力。參考電站的功率水平為1000兆瓦,冷卻劑出口溫度700~800℃,熱效率高。
冷堆系統
超高溫氣冷堆(very high temperature reactor,VHTR)系統是一次通過式鈾燃料循環的石墨慢化氦冷堆。該反應堆堆芯可以是棱柱塊狀堆芯(如日本的高溫工程試驗反應器HTTR),也可以是球床堆芯(如中國的高溫氣冷試驗堆HTR-10)。
VHTR(超高溫氣冷堆)系統提供熱量,堆芯出口溫度為1 000℃,可為石油化工或其他行業生產氫或工藝熱。該系統中也可加入發電設備,以滿足熱電聯供的需要。此外,該系統在采用鈾/钚燃料循環,使廢物量最小化方面具有靈活性。參考堆采用600兆瓦堆芯。
超臨界水冷堆
超臨界水冷堆(super-critical water-cooled reactor,SCWR)系統是高溫高壓水冷堆,在水的熱力學臨界點(374℃,22.1兆帕)以上運行。超臨界水冷卻劑能使熱效率提高到輕水堆的約1.3倍。該系統的特點是,冷卻劑在反應堆中不改變狀態,直接與能量轉換設備相連接,因此可大大簡化電廠配套設備。燃料為鈾氧化物。堆芯設計有兩個方案,即熱中子譜和快中子譜。參考系統功率為1 700兆瓦,運行壓力是25兆帕,反應堆出口溫度為510~550℃。
組成結構
反應堆的類型很多,但它主要由活性區,反射層,外壓力殼和屏蔽層組成。活性區又由核燃料,慢化劑,冷卻劑和控制棒等組成。當前用于原子能發電站的反應堆中,壓水堆是最具競爭力的堆型(約占61%),沸水堆占一定比例(約占24%),重水堆用的較少(約占5%)。壓水堆的主要特點是:
1)用價格低廉、到處可以得到的普通水作慢化劑和冷卻劑,
2)為了使反應堆內溫度很高的冷卻水保持液態,反應堆在高壓力(水壓約為15.5 MPa )下運行,所以叫壓水堆;
3)由于反應堆內的水處于液態,驅動汽輪發電機組的蒸汽必須在反應堆以外產生;這是借助于蒸汽發生器實現的,來自反應堆的冷卻水即一回路水流入蒸汽發生器傳熱管的一側,將熱量傳給傳熱管另一側的二回路水,使后者轉變為蒸汽(二回路蒸汽壓力為6—7 MPa,蒸汽平均溫度為310℃,以大亞灣核電廠為例);
4)由于用普通水作慢化劑和冷卻劑,熱中子吸收截面較大,因此不可能用天然鈾作核燃料,必須使用濃縮鈾(鈾-235的含量為2—4%)作核燃料。沸水堆和壓水堆同屬于輕水堆,它和壓水堆一樣,也用普通水作慢化劑和冷卻劑,不同的是在沸水堆內產生蒸汽(壓力約為7 MPa),并直接進入氣輪機發電,無需蒸汽發生器,也沒有一回路與二回路之分,系統特別簡單,工作壓力比壓水堆低。然而,沸水堆的蒸汽帶有放射性,需采取屏蔽措施以防止放射性泄漏。重水堆是用重水作慢化劑和冷卻劑,因為其熱中子吸收截面遠小于普通水的熱中子吸收截面,所以可以用天然鈾作為重水堆的核燃料。所謂熱中子,是指鈾-235原子核裂變時射出的快中子經慢化后速度降為2200 m/s、能量約為1/40 eV的中子。熱中子引起鈾-235核裂變的可能性,比被鈾-238原子核俘獲的可能性大190倍。這樣,在以天然鈾為燃料的重水堆中,核裂變鏈鎖反應可持續進行下去。由于重水慢化中子不如普通水有效,因此重水堆的堆芯比輕水堆大得多,使得壓力容器制造變得困難。重水堆仍需配備蒸汽發生器,一回路的重水將熱量帶到蒸汽發生器,傳給二回路的普通水以產生蒸汽。重水堆的最大優點是不用濃縮鈾而用天然鈾作核燃料,但是阻礙其發展的重要原因之一是重水很難得到,因為在天然水中重水只占1/6500。
慢化劑
核燃料裂變反應釋放的中子為快中子,而在熱中子或中能中子反應堆中要應用慢化中子維持鏈式反應,
慢化劑
慢化劑就是用來將快中子能量減少,使之慢化成為中子或中能中子的物質[5]。選擇慢化劑要考慮許多不同的要求。首先是核特性:即良好的慢化性能和盡可能低的中子吸收截面;其次是價格、機械特性和輻照敏感性。有時慢化劑兼作冷卻劑,即使不是,在設計中兩者也是緊密相關的。應用最多的固體慢化劑是石墨,其優點是具有良好的慢化性能和機械加工性能,小的中子俘獲截面和價廉。石墨是迄今發現的可以采用天然鈾為燃料的兩種慢化劑之一;另一種是重水。其他種類慢化劑則必須使用濃縮的核燃料。從核特性看,重水是更好的慢化劑,并且因其是液體,可兼做冷卻劑,主要缺點是價格較貴,系統設計需有嚴格的密封要求。輕水是應用最廣泛的慢化劑,雖然它的慢化性能不如重水,但價格便宜。重水和輕水有共同的缺點,即產生輻照分解,出現氫、氧的積累和復合。
控制棒
在反應堆中起補償和調節中子反應性以及緊急停堆的作用[6]。制作控制棒的材料其熱中子吸收截面大,而散射
控制棒
截面小。好的控制棒材料(如鎘、銀、銦等)在吸收中子后產生的新同位素仍具有大的熱中子吸收截面,因而使用壽命很長。核電站常用的控制棒材料有硼鋼、銀-銦-鎘合金等。其中含硼材料因資源豐富、價格低,應用較廣,但它容易產生輻照脆化和尺寸變化(腫脹)。銀-銦-鎘合金熱中子吸收截面大,是輕水堆的主要控制材料。壓水堆中采用棒束控制,控制材料制成棒狀,每個棒束由24根控制棒組成,均勻分布在17×17的燃料組件間。核電站通過專門驅動機構調節控制棒插入燃料組件的深度,以控制反應堆的反應性,緊急情況下則利用控制棒停堆(這時,控制棒材料大量吸收熱中子,使自持鏈式反應無法維持而中止)。
冷卻劑
由主循環泵驅動,在一回路中循環[7],從堆芯帶走熱量并傳給二回路中的工質,使蒸汽發生器產生高溫高壓蒸
冷卻劑
汽,以驅動汽輪發電機發電。冷卻劑是唯一既在堆芯中工作又在堆外工作的一種反應堆成分,這就要求冷卻劑必需在高溫和高中子通量場中工作是穩定的。此外,大多數適合的流體以及它們含有的雜質在中子輻照下將具有放射性,因此冷卻劑要用耐輻照的材料包容起來,用具有良好射線阻擋能力的材料進行屏蔽。理想的冷卻劑應具有優良慢化劑核特性,有較大的傳熱系數和熱容量、抗氧化以及不會產生很高的放射性。液態鈉(主要用于快中子堆)和鈉鉀合金(主要用于空間動力堆)具有大的熱容量和良好的傳熱性能。輕水在價格、處理、抗氧化和活化方面都有優點,但是它的熱特性不好。重水是好的冷卻劑和慢化劑,但價格昂貴。氣體冷卻劑(如二氧化碳、氦)具有許多優點,但要求比液體冷卻劑更高的循環泵功率,系統密封性要求也較高。有機冷卻劑較突出的優點是在堆內的激活活性較低,這是因為全部有機冷卻劑的中子俘獲截面較低,主要缺點是輻照分解率較大。應用最普遍的壓水堆核電站用輕水作冷卻劑兼慢化劑。
屏蔽層
為防護中子、γ射線和熱輻射,必須在反應堆和大多數輔助設備周圍設置屏蔽層。其設計要力求造價便宜并節省空間。對γ射線屏蔽,通常選擇鋼、鉛、普通混凝土和重混凝土。鋼的強度最好,但價格較高;鉛的優點是密度高,因此鉛屏蔽厚度較??;混凝土比金屬便宜,但密度較小,因而屏蔽層厚度比其他的都大[3]。
來自反應堆的γ射線強度很高,被屏蔽體吸收后會發熱,因此緊靠反應堆的γ射線屏蔽層中常設有冷卻水管。某些反應堆堆芯和壓力殼之間設有熱屏蔽,以減少中子引起壓力殼的輻照損傷和射線引起壓力殼發熱。
中子屏蔽需用有較大中子俘獲截面元素的材料,通常含硼,有時是濃縮的硼-10。有些屏蔽材料俘獲中子后放射出γ射線,因此在中子屏蔽外要有一層γ射線屏蔽。通常設計最外層屏蔽時應將輻射減到人類允許劑量水平以下,常稱為生物屏蔽。核電站反應堆最外層屏蔽一般選用普通混凝土或重混凝土。
行波堆
核電行波堆的名字借用了無線電技術的行波管,但是物理本質截然不同。行波管是利用電子槍發射的電子注在聚焦系統中給同向傳輸的微波傳遞能量,從而放大微波信號。而核電行波堆則是利用起始端少量高濃度鈾235裂變產生的快中子轟擊貧鈾(幾乎完全是鈾238)生成钚239。钚239俘獲中子后裂變生成多達300種的各種中等質量原子,并平均產生2.5個中子和2億電子伏的能量。裂變能被液態金屬鈉或其他載熱介質吸收用來發電,新產生的中子則維持堆芯里的核反應不斷向前行進,直到將整個堆芯“燒”盡為止。行波堆因此得名[4]。
主要特點
核能發電有一個重要的優點——非常清潔。與火電站相比,核電站從環保角度來講簡直就是做到了極致。火電站向大氣中釋放的放射性物質比核電站還多,同時它還向大氣中釋放大量的碳、硫和其他元素。
非常不幸的是,核電站的運行也存在一些嚴重的問題:
鈾的開采和提純并不是非常清潔的過程。
非正常運行的核電站能夠帶來大問題。切爾諾貝利災難是最近的一個例子;2011年3月12日,地震導致日本福島縣第一和第二核電站發生核泄漏。
核電站的乏燃料[8]在幾百年內都是有毒的,并且到目前為止,世界上沒有能安全、永久地存儲它們的設施。
運輸核燃料往返于核電站帶來了一些風險,不過迄今為止,美國并沒有發生過這種事故。
很大程度上,以上這些問題使得在美國建設新核電站的嘗試偏離了正常軌道。因為社會似乎普遍認為建設核電站風險超過了回報。