模型評估方法

  1. Estimator對象的score方法
  2. 在交叉驗證中使用scoring參數
  3. 使用sklearn.metric中的性能度量函數

Estimator對象的score方法

分類算法必須要繼承ClassifierMixin類, 回歸算法必須要繼承RegressionMixin類,里面都有一個score
()方法。

score(self, X, y_true)函數會在內部調用predict函數獲得預測響應y_predict,然后與傳入的真是響應進行比較,計算得分。

使用estimator的score函數來評估模型的屬性,默認情況下,分類器對應于準確率:sklearn.metrics.accuracy_score, 回歸器對應于均方差: sklearn.metrics.r2_score。

在交叉驗證中使用scoring參數

GridSearchCV(scoring=None)
cross_val_score(scoring=None)
...

指定在進行網格搜索或者計算交叉驗證得分的時候,使用什么標準度量'estimator'的預測性能,默認是None,就是使用estimator自己的score方法來計算得分。我們可以指定別的性能度量標準,它必須是一個可調用對象,sklearn.metrics不僅為我們提供了一系列預定義的可調用對象,而且還支持自定義評估標準

Scoring Function
分類
accuracy metrics.accuracy_score
average_precision metrics.average_precision_score
f1 metrics.f1_score
f1_micro metrics.f1_score
f1_macro metrics.f1_score
f1_weighted metrics.f1_score
f1_sample metrics.f1_score
neg_log_loss metrics.log_loss
precision metrics.precision_score
recall metrics.recall_score
roc_auc metrics.roc_auc_score
聚類
adjusted_rand_score metrics.adjusted_rand_score
回歸
neg_mean_absolute_erroe metrics.neg_mean_absolute_erroe
neg_mean_squared_error metrics.neg_mean_squared_error
neg_median_absolute_error metrics.neg_median_absolute_error
r2 metrics.r2

約定: 返回值越大代表性能越好

可以使用sklearn.metrics.SCORERS返回以上的評估函數。

在交叉驗證中使用自定義scoring參數

  1. 把sklearn.metrics中已有的度量指標封裝成符合‘scoring’參數要求的形式。
    Metrics模塊中的很多的度量方法并沒有被分配‘scoring’參數可用的名字。因為這些度量指標需要附加參數,比如:‘fbeta_score’。在這種情況下,如果我們想要使用‘fbeta_score’的話,必須要產生一個合適的scoring對象,產生可調用對象的最簡單的方法就是使用‘make_scorer’,該函數會把'fbeta_score'這個函數轉換成能夠在模型評估中使用的可調用對象。
from sklearn.metrics import fbeta_score, make_scorer
ftwo_score = make_scorer(fbeta_score, beta=2)  # 添加參數
from sklearn.model_selection import  GridSearchCV
from sklearn.svm import LinearSVC
grid = GridSearchCV(LinearSVC(), param_grid={'C': [1,10]}, scoring=ftwo_score)
  1. 完全自定義自己的度量指標然后用'make_scorer'函數轉換成符合’scoring‘參數要求的形式
from sklearn.metrics import fbeta_score, make_scorer
import numpy as np
def my_custom_loss_func(ground_truth, predictions):
    diff = np.abs(ground_truth - predictions).max()
    return np.log(1 + diff)
loss = make_scorer(my_custom_loss_func, greater_is_better = False)
score = make_scorer(my_custom_loss_func, greater_is_better = False)
ground_truth = [[1,1]]
predictions = [0,1]
from sklearn.dummy import DummyClassifier
clf = DummyClassifier(strategy='most_frequent', random_state = 0)
clf = clf.fit(ground_truth, predictions)
print(loss(clf, ground_truth, predictions))
print(score(clf, ground_truth, predictions))
image
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,786評論 6 534
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,656評論 3 419
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,697評論 0 379
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,098評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,855評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,254評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,322評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,473評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,014評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,833評論 3 355
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,016評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,568評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,273評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,680評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,946評論 1 288
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,730評論 3 393
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,006評論 2 374

推薦閱讀更多精彩內容