MySQL索引和SQL調優

[TOC]

MySQL索引和SQL調優

本文有參考網上其他相關文章,本文最后有附參考的鏈接

MySQL索引

MySQL支持諸多存儲引擎,而各種存儲引擎對索引的支持也各不相同,因此MySQL數據庫支持多種索引類型,如BTree索引,哈希索引,全文索引等等。為了避免混亂,本文將只關注于BTree索引,因為這是平常使用MySQL時主要打交道的索引。

MySQL官方對索引的定義為:索引(Index)是幫助MySQL高效獲取數據的數據結構。提取句子主干,就可以得到索引的本質:索引是數據結構。

MySQL索引原理

索引目的

索引的目的在于提高查詢效率,可以類比字典,如果要查“mysql”這個單詞,我們肯定需要定位到m字母,然后從下往下找到y字母,再找到剩下的sql。如果沒有索引,那么你可能需要把所有單詞看一遍才能找到你想要的,如果我想找到m開頭的單詞呢?或者ze開頭的單詞呢?是不是覺得如果沒有索引,這個事情根本無法完成?

咱們去圖書館借書也是一樣,如果你要借某一本書,一定是先找到對應的分類科目,再找到對應的編號,這是生活中活生生的例子,通用索引,可以加快查詢速度,快速定位。

索引原理

所有索引原理都是一樣的,通過不斷的縮小想要獲得數據的范圍來篩選出最終想要的結果,同時把隨機的事件變成順序的事件,也就是我們總是通過同一種查找方式來鎖定數據。

數據庫也是一樣,但顯然要復雜許多,因為不僅面臨著等值查詢,還有范圍查詢(>、<、between、in)、模糊查詢(like)、并集查詢(or)等等。數據庫應該選擇怎么樣的方式來應對所有的問題呢?我們回想字典的例子,能不能把數據分成段,然后分段查詢呢?最簡單的如果1000條數據,1到100分成第一段,101到200分成第二段,201到300分成第三段……這樣查第250條數據,只要找第三段就可以了,一下子去除了90%的無效數據。但如果是1千萬的記錄呢,分成幾段比較好?稍有算法基礎的同學會想到搜索樹,其平均復雜度是lgN,具有不錯的查詢性能。但這里我們忽略了一個關鍵的問題,復雜度模型是基于每次相同的操作成本來考慮的,數據庫實現比較復雜,數據保存在磁盤上,而為了提高性能,每次又可以把部分數據讀入內存來計算,因為我們知道訪問磁盤的成本大概是訪問內存的十萬倍左右,所以簡單的搜索樹難以滿足復雜的應用場景。

索引結構

任何一種數據結構都不是憑空產生的,一定會有它的背景和使用場景,我們現在總結一下,我們需要這種數據結構能夠做些什么,其實很簡單,那就是:每次查找數據時把磁盤IO次數控制在一個很小的數量級,最好是常數數量級。那么我們就想到如果一個高度可控的多路搜索樹是否能滿足需求呢?就這樣,b+樹應運而生。

b+樹的索引結構解釋
b+樹.jpg

淺藍色的塊我們稱之為一個磁盤塊,可以看到每個磁盤塊包含幾個數據項(深藍色所示)和指針(黃色所示),如磁盤塊1包含數據項17和35,包含指針P1、P2、P3,P1表示小于17的磁盤塊,P2表示在17和35之間的磁盤塊,P3表示大于35的磁盤塊。真實的數據存在于葉子節點即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非葉子節點不存儲真實的數據,只存儲指引搜索方向的數據項,如17、35并不真實存在于數據表中。

b+樹的查找過程

如圖所示,如果要查找數據項29,那么首先會把磁盤塊1由磁盤加載到內存,此時發生一次IO,在內存中用二分查找確定29在17和35之間,鎖定磁盤塊1的P2指針,內存時間因為非常短(相比磁盤的IO)可以忽略不計,通過磁盤塊1的P2指針的磁盤地址把磁盤塊3由磁盤加載到內存,發生第二次IO,29在26和30之間,鎖定磁盤塊3的P2指針,通過指針加載磁盤塊8到內存,發生第三次IO,同時內存中做二分查找找到29,結束查詢,總計三次IO。真實的情況是,3層的b+樹可以表示上百萬的數據,如果上百萬的數據查找只需要三次IO,性能提高將是巨大的,如果沒有索引,每個數據項都要發生一次IO,那么總共需要百萬次的IO,顯然成本非常非常高。

b+樹性質
  1. 通過上面的分析,我們知道間越小,數據項的數量越多,樹的高度越低。這就是為什么每個數據項,即索引字段要盡量的小,比如int占4字節,要比bigint8字節少一半。這也是為什么b+樹要求把真實的數據放到葉子節點而不是內層節點,一旦放到內層節點,磁盤塊的數據項會大幅度下降,導致樹增高。當數據項等于1時將會退化成線性表。

  2. 當b+樹的數據項是復合的數據結構,比如(name,age,sex)的時候,b+數是按照從左到右的順序來建立搜索樹的,比如當(張三,20,F)這樣的數據來檢索的時候,b+樹會優先比較name來確定下一步的所搜方向,如果name相同再依次比較age和sex,最后得到檢索的數據;但當(20,F)這樣的沒有name的數據來的時候,b+樹就不知道下一步該查哪個節點,因為建立搜索樹的時候name就是第一個比較因子,必須要先根據name來搜索才能知道下一步去哪里查詢。比如當(張三,F)這樣的數據來檢索時,b+樹可以用name來指定搜索方向,但下一個字段age的缺失,所以只能把名字等于張三的數據都找到,然后再匹配性別是F的數據了, 這個是非常重要的性質,即索引的最左匹配特性。

MySQL 索引實現

在MySQL中,索引屬于存儲引擎級別的概念,不同存儲引擎對索引的實現方式是不同的,本文主要討論MyISAM和InnoDB兩個存儲引擎的索引實現方式。

MyISAM索引實現

MyISAM引擎使用B+Tree作為索引結構,葉節點的data域存放的是數據記錄的地址。
下圖是MyISAM索引的原理圖:

MyISAM_Primarykey.png

這里設表一共有三列,假設我們以Col1為主鍵,則上圖便是一個MyISAM表的主索引(Primary key)示意圖。可以看出MyISAM的索引文件僅僅保存數據記錄的地址。在MyISAM中,主索引和輔助索引(Secondary key)在結構上沒有任何區別,只是主索引要求key是唯一的,而輔助索引的key可以重復。如果我們在Col2上建立一個輔助索引,則此索引的結構如下圖所示:

MyISAM_Secondarykey.png

同樣也是一顆B+Tree,data域保存數據記錄的地址。因此,MyISAM中索引檢索的算法為首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,則取出其data域的值,然后以data域的值為地址,讀取相應數據記錄。

MyISAM的索引方式也叫做“非聚集”的,之所以這么稱呼是為了與InnoDB的聚集索引區分。

InnoDB索引實現

雖然InnoDB也使用B+Tree作為索引結構,但具體實現方式卻與MyISAM截然不同。

第一個重大區別是InnoDB的數據文件本身就是索引文件。從上文知道,MyISAM索引文件和數據文件是分離的,索引文件僅保存數據記錄的地址。而在InnoDB中,表數據文件本身就是按B+Tree組織的一個索引結構,這棵樹的葉節點data域保存了完整的數據記錄。這個索引的key是數據表的主鍵,因此InnoDB表數據文件本身就是主索引。

InnoDB_Primarykey.png

上圖是InnoDB主索引(同時也是數據文件)的示意圖,可以看到葉節點包含了完整的數據記錄。這種索引叫做聚集索引。因為InnoDB的數據文件本身要按主鍵聚集,所以InnoDB要求表必須有主鍵(MyISAM可以沒有),如果沒有顯式指定,則MySQL系統會自動選擇一個可以唯一標識數據記錄的列作為主鍵,如果不存在這種列,則MySQL自動為InnoDB表生成一個隱含字段作為主鍵,這個字段長度為6個字節,類型為長整形。

第二個與MyISAM索引的不同是InnoDB的輔助索引data域存儲相應記錄主鍵的值而不是地址。換句話說,InnoDB的所有輔助索引都引用主鍵作為data域。例如,下圖為定義在Col3上的一個輔助索引:

InnoDB_Secondarykey.png

這里以英文字符的ASCII碼作為比較準則。聚集索引這種實現方式使得按主鍵的搜索十分高效,但是輔助索引搜索需要檢索兩遍索引:首先檢索輔助索引獲得主鍵,然后用主鍵到主索引中檢索獲得記錄。

了解不同存儲引擎的索引實現方式對于正確使用和優化索引都非常有幫助,例如知道了InnoDB的索引實現后,就很容易明白為什么不建議使用過長的字段作為主鍵,因為所有輔助索引都引用主索引,過長的主索引會令輔助索引變得過大。再例如,用非單調的字段作為主鍵在InnoDB中不是個好主意,因為InnoDB數據文件本身是一顆B+Tree,非單調的主鍵會造成在插入新記錄時數據文件為了維持B+Tree的特性而頻繁的分裂調整,十分低效,而使用自增字段作為主鍵則是一個很好的選擇。

如何建立合適的索引

建立索引的原理

一個最重要的原則是最左前綴原理,在提這個之前要先說下聯合索引,MySQL中的索引可以以一定順序引用多個列,這種索引叫做聯合索引,一般的,一個聯合索引是一個有序元組<a1, a2, …, an>,其中各個元素均為數據表的一列。另外,單列索引可以看成聯合索引元素數為1的特例。

索引匹配的最左原則具體是說,假如索引列分別為A,B,C,順序也是A,B,C:

- 那么查詢的時候,如果查詢【A】【A,B】 【A,B,C】,那么可以通過索引查詢
- 如果查詢的時候,采用【A,C】,那么C這個雖然是索引,但是由于中間缺失了B,因此C這個索引是用不到的,只能用到A索引
- 如果查詢的時候,采用【B】 【B,C】 【C】,由于沒有用到第一列索引,不是最左前綴,那么后面的索引也是用不到了
- 如果查詢的時候,采用范圍查詢,并且是最左前綴,也就是第一列索引,那么可以用到索引,但是范圍后面的列無法用到索引

因為索引雖然加快了查詢速度,但索引也是有代價的:索引文件本身要消耗存儲空間,同時索引會加重插入、刪除和修改記錄時的負擔,另外,MySQL在運行時也要消耗資源維護索引,因此索引并不是越多越好

在使用InnoDB存儲引擎時,如果沒有特別的需要,請永遠使用一個與業務無關的自增字段作為主鍵。如果從數據庫索引優化角度看,使用InnoDB引擎而不使用自增主鍵絕對是一個糟糕的主意。

InnoDB使用聚集索引,數據記錄本身被存于主索引(一顆B+Tree)的葉子節點上。這就要求同一個葉子節點內(大小為一個內存頁或磁盤頁)的各條數據記錄按主鍵順序存放,因此每當有一條新的記錄插入時,MySQL會根據其主鍵將其插入適當的節點和位置,如果頁面達到裝載因子(InnoDB默認為15/16),則開辟一個新的頁(節點)。如果表使用自增主鍵,那么每次插入新的記錄,記錄就會順序添加到當前索引節點的后續位置,當一頁寫滿,就會自動開辟一個新的頁。如下:

auto_Primarykey.png

這樣就會形成一個緊湊的索引結構,近似順序填滿。由于每次插入時也不需要移動已有數據,因此效率很高,也不會增加很多開銷在維護索引上。

如果使用非自增主鍵(如果身份證號或學號等),由于每次插入主鍵的值近似于隨機,因此每次新紀錄都要被插到現有索引頁得中間某個位置,如下:


random_Primarykey.png

此時MySQL不得不為了將新記錄插到合適位置而移動數據,甚至目標頁面可能已經被回寫到磁盤上而從緩存中清掉,此時又要從磁盤上讀回來,這增加了很多開銷,同時頻繁的移動、分頁操作造成了大量的碎片,得到了不夠緊湊的索引結構,后續不得不通過OPTIMIZE TABLE來重建表并優化填充頁面。

因此,只要可以,請盡量在InnoDB上采用自增字段做主鍵。

建立索引的常用技巧

  1. 最左前綴匹配原則,非常重要的原則,mysql會一直向右匹配直到遇到范圍查詢(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)順序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引則都可以用到,a,b,d的順序可以任意調整。

  2. =和in可以亂序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意順序,mysql的查詢優化器會幫你優化成索引可以識別的形式

  3. 盡量選擇區分度高的列作為索引,區分度的公式是count(distinct col)/count(*),表示字段不重復的比例,比例越大我們掃描的記錄數越少,唯一鍵的區分度是1,而一些狀態、性別字段可能在大數據面前區分度就是0,那可能有人會問,這個比例有什么經驗值嗎?使用場景不同,這個值也很難確定,一般需要join的字段我們都要求是0.1以上,即平均1條掃描10條記錄

  4. 索引列不能參與計算,保持列“干凈”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很簡單,b+樹中存的都是數據表中的字段值,但進行檢索時,需要把所有元素都應用函數才能比較,顯然成本太大。所以語句應該寫成create_time = unix_timestamp(’2014-05-29’);

  5. 盡量的擴展索引,不要新建索引。比如表中已經有a的索引,現在要加(a,b)的索引,那么只需要修改原來的索引即可,當然要考慮原有數據和線上使用情況

MySQL優化

配置優化

配置優化指的MySQL 的 server端的配置,一般對于業務方而言,可以不用關注,畢竟會有專門的DBA來處理,但是對于原理的了解,我想,我們開發,是需要了解的

基本配置

  • innodb_buffer_pool_size
    • 這是安裝完InnoDB后第一個應該設置的選項。緩沖池是數據和索引緩存的地方:這個值越大越好,這能保證你在大多數的讀取操作時使用的是內存而不是硬盤。典型的值是5-6GB(8GB內存),20-25GB(32GB內存),100-120GB(128GB內存)。
  • innodb_log_file_size
    • 這是redo日志的大小。redo日志被用于確保寫操作快速而可靠并且在崩潰時恢復。一直到MySQL 5.1,它都難于調整,因為一方面你想讓它更大來提高性能,另一方面你想讓它更小來使得崩潰后更快恢復。幸運的是從MySQL 5.5之后,崩潰恢復的性能的到了很大提升,這樣你就可以同時擁有較高的寫入性能和崩潰恢復性能了。一直到MySQL 5.5,redo日志的總尺寸被限定在4GB(默認可以有2個log文件)。這在MySQL 5.6里被提高了。如果你知道你的應用程序需要頻繁的寫入數據并且你使用的時MySQL 5.6,你可以一開始就把它這是成4G。
  • max_connections
    • 如果你經常看到‘Too many connections'錯誤,是因為max_connections的值太低了。這非常常見因為應用程序沒有正確的關閉數據庫連接,你需要比默認的151連接數更大的值。max_connection值被設高了(例如1000或更高)之后一個主要缺陷是當服務器運行1000個或更高的活動事務時會變的沒有響應。在應用程序里使用連接池或者在MySQL里使用進程池有助于解決這一問題。

InnoDB配置

  • innodb_file_per_table
    • 這項設置告知InnoDB是否需要將所有表的數據和索引存放在共享表空間里(innodb_file_per_table = OFF) 或者為每張表的數據單獨放在一個.ibd文件(innodb_file_per_table = ON)。每張表一個文件允許你在drop、truncate或者rebuild表時回收磁盤空間。這對于一些高級特性也是有必要的,比如數據壓縮。但是它不會帶來任何性能收益。你不想讓每張表一個文件的主要場景是:有非常多的表(比如10k+)。MySQL 5.6中,這個屬性默認值是ON,因此大部分情況下你什么都不需要做。對于之前的版本你必需在加載數據之前將這個屬性設置為ON,因為它只對新創建的表有影響。
  • innodb_flush_log_at_trx_commit
    • 默認值為1,表示InnoDB完全支持ACID特性。當你的主要關注點是數據安全的時候這個值是最合適的,比如在一個主節點上。但是對于磁盤(讀寫)速度較慢的系統,它會帶來很巨大的開銷,因為每次將改變flush到redo日志都需要額外的fsyncs。將它的值設置為2會導致不太可靠(reliable)因為提交的事務僅僅每秒才flush一次到redo日志,但對于一些場景是可以接受的,比如對于主節點的備份節點這個值是可以接受的。如果值為0速度就更快了,但在系統崩潰時可能丟失一些數據:只適用于備份節點。
  • innodb_flush_method
    • 這項配置決定了數據和日志寫入硬盤的方式。一般來說,如果你有硬件RAID控制器,并且其獨立緩存采用write-back機制,并有著電池斷電保護,那么應該設置配置為O_DIRECT;否則,大多數情況下應將其設為fdatasync(默認值)。sysbench是一個可以幫助你決定這個選項的好工具。
  • innodb_log_buffer_size
    • 這項配置決定了為尚未執行的事務分配的緩存。其默認值(1MB)一般來說已經夠用了,但是如果你的事務中包含有二進制大對象或者大文本字段的話,這點緩存很快就會被填滿并觸發額外的I/O操作。看看Innodb_log_waits狀態變量,如果它不是0,增加innodb_log_buffer_size。

其他設置

  • query_cache_size
    • query cache(查詢緩存)是一個眾所周知的瓶頸,甚至在并發并不多的時候也是如此。 最佳選項是將其從一開始就停用,設置query_cache_size = 0(現在MySQL 5.6的默認值)并利用其他方法加速查詢:優化索引、增加拷貝分散負載或者啟用額外的緩存(比如memcache或redis)。如果你已經為你的應用啟用了query cache并且還沒有發現任何問題,query cache可能對你有用。這是如果你想停用它,那就得小心了。
  • log_bin
    • 如果你想讓數據庫服務器充當主節點的備份節點,那么開啟二進制日志是必須的。如果這么做了之后,還別忘了設置server_id為一個唯一的值。就算只有一個服務器,如果你想做基于時間點的數據恢復,這(開啟二進制日志)也是很有用的:從你最近的備份中恢復(全量備份),并應用二進制日志中的修改(增量備份)。二進制日志一旦創建就將永久保存。所以如果你不想讓磁盤空間耗盡,你可以用 PURGE BINARY LOGS 來清除舊文件,或者設置 expire_logs_days 來指定過多少天日志將被自動清除。記錄二進制日志不是沒有開銷的,所以如果你在一個非主節點的復制節點上不需要它的話,那么建議關閉這個選項。
  • skip_name_resolve
    • 當客戶端連接數據庫服務器時,服務器會進行主機名解析,并且當DNS很慢時,建立連接也會很慢。因此建議在啟動服務器時關閉skip_name_resolve選項而不進行DNS查找。唯一的局限是之后GRANT語句中只能使用IP地址了,因此在添加這項設置到一個已有系統中必須格外小心。

SQL 調優

一般要進行SQL調優,那么就說有慢查詢的SQL,系統或者server可以開啟慢查詢日志,尤其是線上系統,一般都會開啟慢查詢日志,如果有慢查詢,可以通過日志來過濾。但是知道了有需要優化的SQL后,下面要做的就是如何進行調優

慢查詢優化基本步驟

  1. 先運行看看是否真的很慢,注意設置SQL_NO_CACHE
  2. where條件單表查,鎖定最小返回記錄表。這句話的意思是把查詢語句的where都應用到表中返回的記錄數最小的表開始查起,單表每個字段分別查詢,看哪個字段的區分度最高
  3. explain查看執行計劃,是否與1預期一致(從鎖定記錄較少的表開始查詢)
  4. order by limit 形式的sql語句讓排序的表優先查
  5. 了解業務方使用場景
  6. 加索引時參照建索引的幾大原則
  7. 觀察結果,不符合預期繼續從0分析

常用調優手段

執行計劃explain

在日常工作中,我們有時會開慢查詢去記錄一些執行時間比較久的SQL語句,找出這些SQL語句并不意味著完事了,我們常常用到explain這個命令來查看一個這些SQL語句的執行計劃,查看該SQL語句有沒有使用上了索引,有沒有做全表掃描,這都可以通過explain命令來查看。所以我們深入了解MySQL的基于開銷的優化器,還可以獲得很多可能被優化器考慮到的訪問策略的細節,以及當運行SQL語句時哪種策略預計會被優化器采用。

使用explain 只需要在原有select 基礎上加上explain關鍵字就可以了,如下:

mysql> explain select * from servers;
+----+-------------+---------+------+---------------+------+---------+------+------+-------+
| id | select_type | table  | type | possible_keys | key  | key_len | ref  | rows | Extra |
+----+-------------+---------+------+---------------+------+---------+------+------+-------+
|  1 | SIMPLE      | servers | ALL  | NULL          | NULL | NULL    | NULL |    1 | NULL  |
+----+-------------+---------+------+---------------+------+---------+------+------+-------+
1 row in set (0.03 sec)

簡要解釋下explain各個字段的含義

  1. id : 表示SQL執行的順序的標識,SQL從大到小的執行
  2. select_type:表示查詢中每個select子句的類型
  3. table:顯示這一行的數據是關于哪張表的,有時不是真實的表名字
  4. type:表示MySQL在表中找到所需行的方式,又稱“訪問類型”。常用的類型有: ALL, index, range, ref, eq_ref, const, system, NULL(從左到右,性能從差到好)
  5. possible_keys:指出MySQL能使用哪個索引在表中找到記錄,查詢涉及到的字段上若存在索引,則該索引將被列出,但不一定被查詢使用
  6. Key:key列顯示MySQL實際決定使用的鍵(索引),如果沒有選擇索引,鍵是NULL。
  7. key_len:表示索引中使用的字節數,可通過該列計算查詢中使用的索引的長度(key_len顯示的值為索引字段的最大可能長度,并非實際使用長度,即key_len是根據表定義計算而得,不是通過表內檢索出的)
  8. ref:表示上述表的連接匹配條件,即哪些列或常量被用于查找索引列上的值
  9. rows: 表示MySQL根據表統計信息及索引選用情況,估算的找到所需的記錄所需要讀取的行數,理論上行數越少,查詢性能越好
  10. Extra:該列包含MySQL解決查詢的詳細信息

EXPLAIN的特性

  • EXPLAIN不會告訴你關于觸發器、存儲過程的信息或用戶自定義函數對查詢的影響情況
  • EXPLAIN不考慮各種Cache
  • EXPLAIN不能顯示MySQL在執行查詢時所作的優化工作
  • 部分統計信息是估算的,并非精確值
  • EXPALIN只能解釋SELECT操作,其他操作要重寫為SELECT后查看執行計劃。

實戰演練

表結構和查詢語句

假如有如下表結構

circlemessage_idx_0 | CREATE TABLE `circlemessage_idx_0` (
  `circle_id` bigint(20) unsigned NOT NULL COMMENT '群組id',
  `from_id` bigint(20) unsigned NOT NULL COMMENT '發送用戶id',
  `to_id` bigint(20) unsigned NOT NULL COMMENT '指定接收用戶id',
  `msg_id` bigint(20) unsigned NOT NULL COMMENT '消息ID',
  `type` tinyint(3) unsigned NOT NULL DEFAULT '0' COMMENT '消息類型',
  PRIMARY KEY (`msg_id`,`to_id`),
  KEY `idx_from_circle` (`from_id`,`circle_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin

通過執行計劃explain分析如下查詢語句

mysql> explain select msg_id from circlemessage_idx_0 where  to_id = 113487 and circle_id=10019063  and msg_id>=6273803462253938690  and from_id != 113487 order by msg_id asc limit 30;
+----+-------------+---------------------+-------+-------------------------+---------+---------+------+--------+-------------+
| id | select_type | table               | type  | possible_keys           | key     | key_len | ref  | rows   | Extra       |
+----+-------------+---------------------+-------+-------------------------+---------+---------+------+--------+-------------+
|  1 | SIMPLE      | circlemessage_idx_0 | range | PRIMARY,idx_from_circle | PRIMARY | 16      | NULL | 349780 | Using where |
+----+-------------+---------------------+-------+-------------------------+---------+---------+------+--------+-------------+
1 row in set (0.00 sec)

mysql> explain select msg_id from circlemessage_idx_0 where  to_id = 113487 and circle_id=10019063   and from_id != 113487 order by msg_id asc limit 30;
+----+-------------+---------------------+-------+-----------------+---------+---------+------+------+-------------+
| id | select_type | table               | type  | possible_keys   | key     | key_len | ref  | rows | Extra       |
+----+-------------+---------------------+-------+-----------------+---------+---------+------+------+-------------+
|  1 | SIMPLE      | circlemessage_idx_0 | index | idx_from_circle | PRIMARY | 16      | NULL |   30 | Using where |
+----+-------------+---------------------+-------+-----------------+---------+---------+------+------+-------------+
1 row in set (0.00 sec)

問題分析

通過上面兩個執行計劃可以發現當沒有msg_id >= xxx這個查詢條件的時候,檢索的rows要少很多,并且兩者查詢的時候都用到了索引,而且用到的還只是主鍵索引。那說明索引應該是不合理的,沒有發揮最大作用。

分析這個執行計劃可以看到,當包含msg_id >= xxx 查詢條件的時候,rows有34w多行,這種情況,說明檢索太多,要么就是表里面確實有這么大,要么就是索引不合理沒有用到索引,大都情況是沒用合理用到索引。列中所用到的索引也是PRIMARY,那就可能是(msg_id,to_id)的其中一個,注意我們建立表的時候msg_id索引的順序是在to_id前面的,因此MySQL查詢一定會優先用msg_id索引,在使用了msg_id索引后,就已經檢索出了34w行,并且由于msg_id的查詢條件是大于等于,因此,再這個查詢條件后,就不能再用到to_id的索引。

然后再看key_len長度為16,結合 key為PRIMARY,那么可以分析得知,只有一個主鍵索引被用到。

最后看看 type 值,是range,那么就說明這個查詢要么是范圍查詢,要么就是多值匹配。

請注意,from_id != xxx 這樣的語句,是無法用到索引的。 只有from_id = xxx就可以用到所以,因此from id 的索引其實可以不用,建立索引的時候就要考慮清楚

如何優化

既然知道索引不合理,那么就要分析并調整索引。一般而言,我們既然要從單表里面查詢,那么就需要能夠知道大體,單表里面大致會有哪些數據,現在的量級大概是多少。

然后開始下一步的分析,既然msgid是被設置為了主鍵,那一定是全局唯一的,所有,有多少數據量就至少會有多少條msgid;那么檢索msg_id基本就是檢索整個表了。我們要做的優化就是要盡量減少索引,減少查詢的行數;那么就需要思考,通過查詢哪些字段才能夠減少行數?比如,一個張表里面,所屬某個用戶的數據,會不會比查詢msgid的行數要少? 查詢某個用戶并且是屬于某個圈子的,那會不會就更少了? 等等。。。

然后根據實際情況分析,單表里面命中to_id 的行數應該是會小于命中msg_id的,因此要首先保證能夠使用到to_id的索引,為此,可以設置主鍵的時候把msg_id和to_id的順序交互一下;但是,由于已經是線上的表,已經有了大量數據,并且業務開始運行,這種情況下,修改主鍵會引發很多問題(當然修改索引是OK的),因此,不建議直接修改主鍵。那么,為了保證有效使用to_id的索引,就要新建一個聯合索引;那么新建的聯合索引的第一索引字段必然是to_id,針對此業務場景,最好能夠再加上circle_id索引,這樣可以快速索引;這樣就得到了新的聯合索引(to_id,circle_id)的索引,然后,因為要找msg_id,為此,在此基礎上,再加上msg_id。最終得到的聯合索引為(to_id,circle_id,msg_id);這樣的話,就能夠快速檢索這樣的查詢語句了:where to_id = xxx and circle_id = xxx and msgId >= xxx

當然,索引的建立,也不是說某個sql 語句需要啥索引,就建立某個聯合索引,這樣的話,索引太多的話,寫的性能受影響(插入、刪除、修改),然后存儲空間也會相應增大;另外mysql在運行時也會消耗資源維護索引,所以,索引并不是越多越好,需要結合查詢最頻繁、最影響性能的sql來建立合適的索引。需要再說明的是,一個聯合索引或者一組主鍵就是一個btree,多個索引就是多個btree

總結

首先我們需要深入理解索引的原理和實現,當理解了原理后,才能夠更有助于我們建立合適的索引。然后我們建立索引的時候,不要想當然,要先想清楚業務邏輯,再建立對應的表結構和索引。 需要再次強調如下幾點:

  1. 索引不是越多越好
  2. 區分主鍵和索引
  3. 理解索引結構原理
  4. 理解查詢索引規則

參考

美團-MySQL索引原理及慢查詢優化

MySQL索引背后的數據結構及算法原理

感謝參考文章的原作者

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,546評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,570評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,505評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,017評論 1 313
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,786評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,219評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,287評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,438評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,971評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,796評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,995評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,540評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,230評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,662評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,918評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,697評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,991評論 2 374

推薦閱讀更多精彩內容