10X單細(xì)胞(10X空間轉(zhuǎn)錄組)利用軌跡分析推斷細(xì)胞間的實(shí)時(shí)通訊(TraSig)

hello,大家好, 今天我們來(lái)分享一個(gè)新的內(nèi)容,利用我們的軌跡分析的結(jié)果來(lái)推斷細(xì)胞之間的通訊交流。文章在Inferring cell-cell interactions from pseudotime ordering of scRNA-Seq data.這個(gè)方法對(duì)于有分化關(guān)系的細(xì)胞類型來(lái)說(shuō),是一個(gè)新的角度解讀細(xì)胞間的通訊,個(gè)人認(rèn)為更加的重要。我們先來(lái)看看文獻(xiàn),最后分享示例代碼。

Abstract

1、A major advantage of single cell RNA-Sequencing (scRNA-Seq) data is the ability to reconstruct continuous ordering and trajectories for cells。
2、To date, such ordering was mainly used to group cells and to infer interactions within cells.
3、prior methods that only focus on the average expression levels of genes in clusters or cell types, TraSig fully utilizes the dynamic information to identify significant ligand-receptor pairs with similar trajectories, which in turn are used to score interacting cell clusters(這一句是精髓,細(xì)胞分化接近的細(xì)胞類型通訊才是最重要的)。

Introduction

1、單細(xì)胞軌跡分析mainly focused on the expression similarity between cells in the same cluster or at consecutive time points and on the differences in transcriptional regulation between cell types and over time。
2、單細(xì)胞細(xì)胞通訊通常是識(shí)別ligands in one of the clusters or cell types and corresponding receptors in another cluster and then infer interactions based on the average expression of these ligand-receptor pairs。(cellphoneDB,SingleCellSingleR等軟件)。While successful, most current methods for inferring cell-cell interactions from scRNA-Seq data only use of the average expression levels of ligands and receptors in the two clusters or cell types they test(這個(gè)地方局限性很大)。
3、目前的通訊分析方法(cluster的平均值)While this may be fine for steady state populations,(for example, different cell types in adult tissues),for studies that focus on development or response modeling, such averages do not take full advantage of the available data in scRNA-Seq studies 。
4、軌跡分析的結(jié)果中,cells on the same branch (or cluster) cannot be assumed to be homogeneous with respect to the expression of key genes. Using average analysis for such clusters may lead to inaccurate predictions about the relationship between ligands and receptors in two different (though parallel in terms of timing) branches.
5、(下圖)While the average expression of a ligand and receptor in two different branches are the same,the first two cases are unlikely to strongly support an interaction between these two cell types while the third and fourth, where both are either increasing or decreasing in their respective ordering, are much more likely to hint at real interactions between the groups。(這是精髓)。
圖片.png
In other words, if two groups of cells are interacting, then we expect to see the genes,encoding signaling molecules in these groups co-express at a similar pace along the pseudotime.(很有道理)。所以在軌跡分析的結(jié)果上進(jìn)行通訊分析,做好的方法就是sliding window approach.(滑動(dòng)窗口法 )。
6、TraSig利用軌跡分析進(jìn)行細(xì)胞通訊分析的方法,extract expression patterns for ligands and receptors in different edges of the trajectory using a sliding window approach. It then uses these profiles to score temporal interactions between ligand and their known receptors in different edges corresponding to the same time.檢驗(yàn)還是置換檢驗(yàn)。

Result

TraSig workflow. Top Left: For a time series scRNA-seq dataset, we use the reconstructed pseudotime, trajectory and the expression data as inputs. Bottom Left: We next determine expression profiles for genes along each of the edges (clusters) using sliding windows and compute dot product scores for pairs of genes in edges. Right: Finally, we use permutation tests to assign significance levels to the scores we computed.
圖片.png
看看示例結(jié)果,利用CSHMM(隱式馬爾科夫模型)構(gòu)建細(xì)胞類型之間的發(fā)育軌跡,關(guān)于CSHMM,大家可以參考一文搞懂HMM(隱馬爾可夫模型),以及我之前分享的文章10X單細(xì)胞(10X空間轉(zhuǎn)錄組)基礎(chǔ)算法之KL散度。
圖片.png
然后是Inferring cell type interactions for liver development。就是上面我們所說(shuō)的滑動(dòng)窗口法。
圖片.png
Results from comparing TraSig with SingleCellSignalR and CellPhoneDB. Top: Heatmaps for scores assigned by the three different methods for all cluster pairs representing cells sampled at the same time. TraSig and SingleCellSignalR identified more ligand-receptors pairs leading to higher scores. Bottom left: -log10 p-value for enriched GO terms related to endothelial cells and vascular development. Bottom right: Venn diagrams for the overlap in identified ligands and receptors among the three methods. The overlap between TraSig and SingleCellSignalR is high though roughly 50% of the identified proteins by each method are not identified by the other.這里的結(jié)果展示的是方法上的差別。
TraSig identifies ligand-receptor interactions important to vascular development,其實(shí)按照這個(gè)方法更加準(zhǔn)確的得到了細(xì)胞在分化過(guò)程中的準(zhǔn)確通訊。
圖片.png
圖注,Ligand-receptor interaction predictions from TraSig of interest for functional studies. (a) Cartoon of cell signaling interaction between different DesLO cell types (HLC, hepatocyte-like cells; CLC, cholangiocyte-like cells; SLC, stellate-like cells; ELC, endothelial-like cells) (b) Trajectory plot showing cell type assignments with key identifying genes highlighted by different colors (Red = SOX2+ non induced cells, Yellow = SOX9 cholangiocyte-like cells, Blue = Hepatocyte-like cells, Purple = Stellate-like cells, Green = Endothelial-like cells). (c) Sender CXCL12 cells from the Cholangiocyte and Stellate populations in red shown with the receiver CXCR4 expressing endothelial cell population in blue. (d) Sender and receiver signaling populations (red = senders/ligands; blue = receivers/receptors)。

其實(shí)最有價(jià)值的就是計(jì)算通訊分析的方法是滑動(dòng)窗口法。

最后看看示例代碼

import pickle
import sys
import os
import gc
import requests

import numpy as np
import bottleneck as bn
import pandas as pd

# load packages required for analysis 
import statsmodels.api as sm
import statsmodels as sm
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats

Run TraSig on the example data

main.py -i input -o output -d oligodendrocyte-differentiation-clusters_marques -g None -b ti_slingshot -n 1000 -s smallerWindow
usage: main.py [-h] -i INPUT -o OUTPUT -d PROJECT -g PREPROCESS -b MODELNAME
               [-t LISTTYPE] [-l NLAP] [-m METRIC] [-z NAN2ZERO] [-n NUMPERMS]
               [-p MULTIPROCESS] [-c NCORES] [-s STARTINGTREATMENT]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        string, folder to find inputs
  -o OUTPUT, --output OUTPUT
                        string, folder to put outputs
  -d PROJECT, --project PROJECT
                        string, project name
  -g PREPROCESS, --preprocess PREPROCESS
                        string, preprocessing steps applied to the data /
                        project, default None
  -b MODELNAME, --modelName MODELNAME
                        string, name of the trajectory model
  -t LISTTYPE, --listType LISTTYPE
                        string, optional, interaction list type, default
                        ligand_receptor
  -l NLAP, --nLap NLAP  integer, optional, sliding window size, default 20
  -m METRIC, --metric METRIC
                        string, optional, scoring metric, default dot
  -z NAN2ZERO, --nan2zero NAN2ZERO
                        boolean, optional, if treat nan as zero, default True
  -n NUMPERMS, --numPerms NUMPERMS
                        integer, optional, number of permutations, default
                        10000
  -p MULTIPROCESS, --multiProcess MULTIPROCESS
                        boolean, optional, if use multi-processing, default
                        True
  -c NCORES, --ncores NCORES
                        integer, optional, number of cores to use for multi-
                        processing, default 4
  -s STARTINGTREATMENT, --startingTreatment STARTINGTREATMENT
                        string, optional, way to treat values at the beginning
                        of an edge with sliding window size smaller than nLap,
                        None/parent/discard/smallerWindow, default
                        smallerWindow, need to provide an extra input
                        'path_info.pickle' for 'parent' option
Prepare inputs for TraSig (from dynverse outputs)
python prepare_inputs.py -i ../trajectory/input -o ../example/input -d oligodendrocyte-differentiation-clusters_marques -t ../trajectory/output/output.h5 -g None -b ti_slingshot -e None
usage: prepare_inputs.py [-h] -i INPUT -o OUTPUT -d PROJECT -t TRAJECTORYFILE
                         -g PREPROCESS -b MODELNAME [-e OTHERIDENTIFIER]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        string, folder to find inputs for trajectory inference
  -o OUTPUT, --output OUTPUT
                        string, folder to save inputs for TraSig
  -d PROJECT, --project PROJECT
                        string, project name
  -t TRAJECTORYFILE, --trajectoryFile TRAJECTORYFILE
                        string, trajectory output file from dynverse, default
                        ../trajectory/output/output.h5
  -g PREPROCESS, --preprocess PREPROCESS
                        string, preprocessing steps applied to the data /
                        project, default None
  -b MODELNAME, --modelName MODELNAME
                        string, name of the trajectory model
  -e OTHERIDENTIFIER, --otherIdentifier OTHERIDENTIFIER
                        string, optional, other identifier for the output,
                        default None
Analyze outputs from TraSig

剩下的大家自己看吧,內(nèi)容在TraSig。研究發(fā)育的童鞋,實(shí)時(shí)通訊,才是最好的分析做法。

生活很好,有你更好

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書(shū)系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
禁止轉(zhuǎn)載,如需轉(zhuǎn)載請(qǐng)通過(guò)簡(jiǎn)信或評(píng)論聯(lián)系作者。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,763評(píng)論 6 539
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,238評(píng)論 3 428
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人,你說(shuō)我怎么就攤上這事。” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 177,823評(píng)論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我,道長(zhǎng),這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 63,604評(píng)論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 72,339評(píng)論 6 410
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 55,713評(píng)論 1 328
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,712評(píng)論 3 445
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 42,893評(píng)論 0 289
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,448評(píng)論 1 335
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 41,201評(píng)論 3 357
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,397評(píng)論 1 372
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,944評(píng)論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,631評(píng)論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 35,033評(píng)論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 36,321評(píng)論 1 293
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 52,128評(píng)論 3 398
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 48,347評(píng)論 2 377

推薦閱讀更多精彩內(nèi)容