import numpy as np
from keras.models import Sequential
from keras.layers.core import Activation, Dense
training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32")
target_data = np.array([[0],[1],[1],[0]], "float32")
model = Sequential()
model.add(Dense(32, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy'])
model.fit(training_data, target_data, nb_epoch=1000, verbose=2)
print model.predict(training_data)
8 異或 的學習
最后編輯于 :
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
推薦閱讀更多精彩內容
- 小學語文修改病句的方法 修改病句是小學語文考試中常見的題型,在修改病句之前,我們應該清晰的了解有哪些病句現象,下面...
- 【蝴蝶效應】 蝴蝶效應:上個世紀70年代,美國一個名叫洛倫茲的氣象學家在解釋空氣系統理論時說,亞馬遜雨林一只蝴蝶...