初中數學常用幾何模型及構造方法大全

  幾何是初中數學中非常重要的內容,一般會在壓軸題中進行考察,而掌握幾何模型能夠為考試節省不少時間,這次整理了常用的各大模型,一定要認真掌握哦!


  全等變換

  平移:平行等線段(平行四邊形)

  對稱:角平分線或垂直或半角

  旋轉:相鄰等線段繞公共頂點旋轉


  對稱全等模型

  說明:以角平分線為軸在角兩邊進行截長補短或者作邊的垂線,形成對稱全等。兩邊進行邊或者角的等量代換,產生聯系。垂直也可以做為軸進行對稱全等。


  對稱半角模型

  說明:上圖依次是45°、30°、22.5°、15°及有一個角是30°直角三角形的對稱(翻折),翻折成正方形或者等腰直角三角形、等邊三角形、對稱全等。


  旋轉全等模型

  半角:有一個角含1/2角及相鄰線段

  自旋轉:有一對相鄰等線段,需要構造旋轉全等

  共旋轉:有兩對相鄰等線段,直接尋找旋轉全等

  中點旋轉:倍長中點相關線段轉換成旋轉全等問題


  旋轉半角模型

  說明:旋轉半角的特征是相鄰等線段所成角含一個二分之一角,通過旋轉將另外兩個和為二分之一的角拼接在一起,成對稱全等。


  自旋轉模型

  構造方法:

  遇60度旋60度,造等邊三角形。

  遇90度旋90度,造等腰直角。

  遇等腰旋頂點,造旋轉全等。

  遇中點旋180度,造中心對稱。


  共旋轉模型

  說明:旋轉中所成的全等三角形,第三邊所成的角是一個經常考察的內容。通過“8”字模型可以證明。


  模型變形

  說明:模型變形主要是兩個正多邊形或者等腰三角形的夾角的變化,另外是等腰直角三角形與正方形的混用。

  當遇到復雜圖形找不到旋轉全等時,先找兩個正多邊形或者等腰三角形的公共頂點,圍繞公共頂點找到兩組相鄰等線段,分組組成三角形證全等。


  中點旋轉

  說明:兩個正方形、兩個等腰直角三角形或者一個正方形一個等腰直角三角形及兩個圖形頂點連線的中點,證明另外兩個頂點與中點所成圖形為等腰直角三角形。證明方法是倍長所要證等腰直角三角形的一直角邊,轉化成要證明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋轉頂點,通過證明旋轉全等三角形證明倍長后的大三角形為等腰直角三角形從而得證。


  幾何最值模型

  對稱最值(兩點間線段最短)

  對稱最值(點到直線垂線段最短)

  說明:通過對稱進行等量代換,轉換成兩點間距離及點到直線距離。

  旋轉最值(共線有最值)

  說明:找到與所要求最值相關成三角形的兩個定長線段,定長線段的和為最大值,定長線段的差為最小值。


  剪拼模型

  三角形→四邊形

  四邊形→四邊形

  說明:剪拼主要是通過中點的180度旋轉及平移改變圖形的形狀。

  矩形→正方形

  說明:通過射影定理找到正方形的邊長,通過平移與旋轉完成形狀改變。

  正方形+等腰直角三角形→正方形

  面積等分


  旋轉相似模型

  說明:兩個等腰直角三角形成旋轉全等,兩個有一個角是300角的直角三角形成旋轉相似。

  推廣:兩個任意相似三角形旋轉成一定角度,成旋轉相似。第三邊所成夾角符合旋轉“8”字的規律。


  相似模型

  說明:注意邊和角的對應,相等線段或者相等比值在證明相似中起到通過等量代換來構造相似三角形的作用。

  說明:

 ?。?)三垂直到一線三等角的演變,三等角以30度、45度、60度形式出現的居多。

  (2)內外角平分線定理到射影定理的演變,注意之間的相同與不同之處。另外,相似、射影定理、相交弦定理(可以推廣到圓冪定理)之間的比值可以轉換成乘積,通過等線段、等比值、等乘積進行代換,進行證明得到需要的結論。

  說明:相似證明中最常用的輔助線是做平行,根據題目的條件或者結論的比值來做相應的平行線。

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,048評論 6 542
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,414評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 178,169評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,722評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,465評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,823評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,813評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,000評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,554評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,295評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,513評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,035評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,722評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,125評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,430評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,237評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,482評論 2 379