兩數之和
題目描述
給定一個整數數組 nums
和一個目標值 target
,請你在該數組中找出和為目標值的那 兩個 整數,并返回他們的數組下標。
你可以假設每種輸入只會對應一個答案。但是,你不能重復利用這個數組中同樣的元素。
示例:
給定 nums = [2, 7, 11, 15], target = 9
因為 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
方法一:暴力法
暴力法很簡單,遍歷每個元素 x,并查找是否存在一個值與 target?x相等的目標元素。
class Solution {
public int[] twoSum(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
for (int j = i + 1; j < nums.length; j++) {
if (nums[j] == target - nums[i]) {
return new int[] { i, j };
}
}
}
throw new IllegalArgumentException("No two sum solution");
}
}
復雜度分析:
- 時間復雜度:O(n^2), 對于每個元素,我們試圖通過遍歷數組的其余部分來尋找它所對應的目標元素,這將耗費 O(n) 的時間。因此時間復雜度為 O(n^2)。
- 空間復雜度:O(1)。
方法二:兩遍哈希表
思考
為了對運行時間復雜度進行優化,我們需要一種更有效的方法來檢查數組中是否存在目標元素。如果存在,我們需要找出它的索引。保持數組中的每個元素與其索引相互對應的最好方法是什么?哈希表。
通過以空間換取速度的方式,我們可以將查找時間從 O(n) 降低到 O(1)。哈希表正是為此目的而構建的,它支持以 近似 恒定的時間進行快速查找。我用“近似”來描述,是因為一旦出現沖突,查找用時可能會退化到 O(n)。但只要你仔細地挑選哈希函數,在哈希表中進行查找的用時應當被攤銷為 O(1)。
一個簡單的實現使用了兩次迭代。在第一次迭代中,我們將每個元素的值和它的索引添加到表中。然后,在第二次迭代中,我們將檢查每個元素所對應的目標元素(target?nums[i])是否存在于表中。注意,該目標元素不能是 nums[i] 本身!
class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
map.put(nums[i], i);
}
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (map.containsKey(complement) && map.get(complement) != i) {
return new int[] { i, map.get(complement) };
}
}
throw new IllegalArgumentException("No two sum solution");
}
}
復雜度分析:
- 時間復雜度:O(n), 我們把包含有 n 個元素的列表遍歷兩次。由于哈希表將查找時間縮短到 O(1) ,所以時間復雜度為 O(n)。
- 空間復雜度:O(n), 所需的額外空間取決于哈希表中存儲的元素數量,該表中存儲了 n 個元素。
方法三:一遍哈希表
事實證明,我們可以一次完成。在進行迭代并將元素插入到表中的同時,我們還會回過頭來檢查表中是否已經存在當前元素所對應的目標元素。如果它存在,那我們已經找到了對應解,并立即將其返回。
class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (map.containsKey(complement)) {
return new int[] { map.get(complement), i };
}
map.put(nums[i], i);
}
throw new IllegalArgumentException("No two sum solution");
}
}
復雜度分析:
- 時間復雜度:O(n), 我們只遍歷了包含有 n 個元素的列表一次。在表中進行的每次查找只花費 O(1) 的時間。
- 空間復雜度:O(n), 所需的額外空間取決于哈希表中存儲的元素數量,該表最多需要存儲 n 個元素。
用 Swift 語言 解 “方法三:一遍哈希表”
事實證明,我們可以一次完成。在進行迭代并將元素插入到表中的同時,我們還會回過頭來檢查表中是否已經存在當前元素所對應的目標元素。如果它存在,那我們已經找到了對應解,并立即將其返回。
/// 求和
///
/// - Parameters:
/// - nums: 數據源
/// - target: 目標值
/// - Returns: 返回值
func twoSum(_ nums: [Int], _ target: Int) -> [Int] {
var result = [Int]()
var container = Set<Int>()
for (index, value) in nums.enumerated() {
let match = target - value
if container.contains(match) {
let f = nums.firstIndex(of: match)!
result.append(f)
result.append(index)
break
}
container.insert(value)
}
return result
}
題解說明:
1.創建Hash Container,解決時間復雜度問題.
2.在Hash Container中查找match.
2.1 查找成功,找到value和match的索引index.
3.查找失敗,將value1存入Hash Container.
4.繼續遍歷數組.