1. 概述
1.1 定義
??鎖是計算機協調多個進程或線程并發訪問某一資源的機制。
在數據庫中,除了傳統的計算資源(如CPU、RAM、I/O等)的爭用以外,數據也是一種供需要用戶共享的資源。如何保證數據并發訪問的一致性、有效性是所有數據庫必須解決的一個問題,鎖沖突也是影響數據庫并發訪問性能的一個重要因素。從這個角度來說,鎖對數據庫而言顯得尤其重要,也更加復雜。
1.2 鎖的分類
- 從性能上分為
樂觀鎖
(用版本對比來實現)和悲觀鎖
- 從對數據庫操作的類型上分為
讀鎖
和寫鎖
(都屬于悲觀鎖)
讀鎖(共享鎖):針對同一份數據,多個讀操作可以同時進行而不會互相影響
寫鎖(排它鎖):當前寫操作沒有完成前,它會阻斷其它寫鎖和讀鎖 - 從對數據庫操作的粒度分為
表鎖
和行鎖
2. 三鎖
2.1 表鎖(偏讀)
表鎖偏向MyISAM存儲引擎,開銷小,加鎖快,無死鎖,鎖定粒度大,發生鎖沖突的概率最高,并發度最低。
2.1.1 基本操作
- 建表SQL
CREATE TABLE `mylock` (
`id` INT (11) NOT NULL AUTO_INCREMENT,
`NAME` VARCHAR (20) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE = MyISAM DEFAULT CHARSET = utf8;
- 插入數據
INSERT INTO`test`.`mylock` (`id`, `NAME`) VALUES ('1', 'a');
INSERT INTO`test`.`mylock` (`id`, `NAME`) VALUES ('2', 'b');
INSERT INTO`test`.`mylock` (`id`, `NAME`) VALUES ('3', 'c');
INSERT INTO`test`.`mylock` (`id`, `NAME`) VALUES ('4', 'd');
- 手動增加表鎖
lock table 表名稱 read(write),表名稱2 read(write);
- 查看表上加過的鎖
show open tables;
- 刪除表鎖
unlock tables;
2.1.2 案例分析(加讀鎖)
- 當前session和其他session都可以讀該表
- 當前session中插入或者更新鎖定的表都會報錯,其他session插入或更新則會等待
注意:當前session會話,也就是當前連接,一個IP可以進行多個連接
(1)session1執行sql語句
lock table mylock read;
(2)session2執行sql語句
update mylock set name = 'a' where id =1;
發現session2sql語句一直在等待
(3)session1執行解鎖sql語句
unlock table;
(4)session1解鎖后 session2 sql語句就執行了
注意:加讀鎖一般用來數據遷移使用。
2.1.3 案例分析(加寫鎖)
當前session對該表的增刪改查都沒有問題,其他session對該表的所有操作被阻塞
lock table mylock write;
update mylock set name = 'a' where id =1;
2.1.4 案例結論
MyISAM在執行查詢語句(SELECT)前,會自動給涉及的所有表加讀鎖,在執行增刪改操作前,會自動給涉及的表加寫鎖。
1、對MyISAM表的讀操作(加讀鎖) ,不會阻寒其他進程對同一表的讀請求,但會阻賽對同一表的寫請求。只有當讀鎖釋放后,才會執行其它進程的寫操作。
2、對MylSAM表的寫操作(加寫鎖) ,會阻塞其他進程對同一表的讀和寫操作,只有當寫鎖釋放后,才會執行其它進程的讀寫操作
總結:
簡而言之,就是讀鎖會阻塞寫,但是不會阻塞讀。而寫鎖則會把讀和寫都阻塞。
2.2 行鎖(偏寫)
行鎖偏向InnoDB存儲引擎,開銷大,加鎖慢,會出現死鎖,鎖定粒度最小,發生鎖沖突的概率最低,并發度也最高。InnoDB與MYISAM的最大不同有兩點:一是支持事務(TRANSACTION);二是采用了行級鎖。
2.2.1 行鎖支持事務
-
事務(Transaction)及其ACID屬性
事務是由一組SQL語句組成的邏輯處理單元,事務具有以下4個屬性,通常簡稱為事務的ACID屬性。
原子性(Atomicity) :事務是一個原子操作單元,其對數據的修改,要么全都執行,要么全都不執行。
一致性(Consistent) :在事務開始和完成時,數據都必須保持一致狀態。這意味著所有相關的數據規則都必須應用于事務的修改,以保持數據的完整性;事務結束時,所有的內部數據結構(如B樹索引或雙向鏈表)也都必須是正確的。
隔離性(Isolation) :數據庫系統提供一定的隔離機制,保證事務在不受外部并發操作影響的“獨立”環境執行。這意味著事務處理過程中的中間狀態對外部是不可見的,反之亦然。
持久性(Durable) :事務完成之后,它對于數據的修改是永久性的,即使出現系統故障也能夠保持。
-
并發事務處理帶來的問題
更新丟失(Lost Update)
當兩個或多個事務選擇同一行,然后基于最初選定的值更新該行時,由于每個事務都不知道其他事務的存在,就會發生丟失更新問題–最后的更新覆蓋了由其他事務所做的更新。
臟讀(Dirty Reads)
一個事務正在對一條記錄做修改,在這個事務完成并提交前,這條記錄的數據就處于不一致的狀態;這時,另一個事務也來讀取同一條記錄,如果不加控制,第二個事務讀取了這些“臟”數據,并據此作進一步的處理,就會產生未提交的數據依賴關系。這種現象被形象的叫做“臟讀”。
一句話:事務A讀取到了事務B已經修改但尚未提交的數據,還在這個數據基礎上做了操作。此時,如果B事務回滾,A讀取的數據無效,不符合一致性要求。
不可重讀(Non-Repeatable Reads)
一個事務在讀取某些數據后的某個時間,再次讀取以前讀過的數據,卻發現其讀出的數據已經發生了改變、或某些記錄已經被刪除了!這種現象就叫做“不可重復讀”。
一句話:事務A讀取到了事務B已經提交的修改數據,不符合隔離性
幻讀(Phantom Reads)
一個事務按相同的查詢條件重新讀取以前檢索過的數據,卻發現其他事務插入了滿足其查詢條件的新數據,這種現象就稱為“幻讀”。
一句話:事務A讀取到了事務B提交的新增數據,不符合隔離性
臟讀是事務B里面修改了數據
幻讀是事務B里面新增了數據
-
事務隔離級別
臟讀”、“不可重復讀”和“幻讀”,其實都是數據庫讀一致性問題,必須由數據庫提供一定的事務隔離機制來解決。
隔離級別 | 臟讀(Dirty Reads) | 不可重復讀(Non-Repeatable Reads) | 幻讀(Phantom Reads) |
---|---|---|---|
Serializable(串行化) | 不可能 | 不可能 | 不可能 |
Repeatable Read(可重復讀) | 不可能 | 不可能 | 可能 |
Read Commited(讀已提交數據) | 不可能 | 可能 | 可能 |
Read Uncomitted(讀未提交數據) | 可能 | 可能 | 可能 |
數據庫的事務隔離越嚴格,并發副作用越小,但付出的代價也就越大,因為事務隔離實質上就是使事務在一定程度上“串行化”進行,這顯然與“并發”是矛盾的。
同時,不同的應用對讀一致性和事務隔離程度的要求也是不同的,比如許多應用對“不可重復讀"和“幻讀”并不敏感,可能更關心數據并發訪問的能力。
查看當前數據庫的事務隔離級別:
select @@tx_isolation;
Mysql 8+ 執行語句
select @@transaction_isolation;
設置事務隔離級別:
set tx_isolation='REPEATABLE-READ';
Mysql 8+ 執行語句
set transaction_isolation='REPEATABLE-READ';
2.2.2 行鎖案例分析
用下面的表演示,需要開啟事務,Session_1更新某一行,Session_2更新同一行被阻塞,但是更新其他行正常
2.2.3 隔離級別案例分析
CREATE TABLE `account` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(255) DEFAULT NULL,
`balance` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('lilei', '450');
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('hanmei', '16000');
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('lucy', '2400');
(1) Session_1 執行語句
BEGIN;
update account set name = 'lilei999' where id =1;
(2) Session_2 查詢語句
SELECT * FROM account;
發現id=1的name并未修改,因為Session_1 事務并未執行(commit)。
(3) Session_2 執行update語句
update account set name = 'hanmei22' where id =2;
update account set name = 'lilei22' where id =1;
發現 id =1時,update一直處于等待狀態,說明InnoDB默認行鎖(表中某一行或多行加鎖)
1.讀未提交 READ-UNCOMMITTED
(1)Session_1執行SQL語句
set transaction_isolation='READ-UNCOMMITTED';
BEGIN;
SELECT * FROM account;
(2)Session_2執行SQL語句
set transaction_isolation='READ-UNCOMMITTED';
BEGIN;
UPDATE account SET balance = balance + 50 where id = 1;
SELECT * FROM account;
(3)Session_1再執行查詢語句
發現Session_2 未提交事務的情況下,Session_1能讀到Session_2 未提交事務的數據
注意:一旦客戶端B的事務因為某種原因回滾,所有的操作都將會被撤銷,那客戶端A查詢到的數據其實就是臟數據:
結論:讀未提交事務隔離級別(READ-UNCOMMITTED)未出現臟讀
2.讀已提交 READ-COMMITTED
(1)Session_1執行SQL語句
set transaction_isolation='READ-COMMITTED';
BEGIN;
SELECT * FROM account;
(2)Session_2執行SQL語句
set transaction_isolation='READ-COMMITTED';
BEGIN;
UPDATE account SET balance = balance + 50 where id = 1;
SELECT * FROM account;
(3)Session_1再執行查詢語句
(4)Session_2 提交事務
COMMIT;
(4)Session_1繼續執行查詢語句
發現客戶端A(Session_1事務未COMMIT提交)執行與上一步相同的查詢,結果 與上一步不一致,即產生了不可重復讀的問題
結論:讀已提交事務隔離級別(READ-COMMITTED)未出現臟讀,但是產生了不可重復讀的問題
3.可重復讀 REPEATABLE-READ
(1)Session_1執行SQL語句
set transaction_isolation='REPEATABLE-READ';
BEGIN;
SELECT * FROM account;
(2)Session_2執行SQL語句
(3)Session_1執行查詢語句
(4)Session_2提交事務
COMMIT;
(5)Session_1執行查詢語句
(6)Session_1執行update語句
發現在客戶端A,接著執行update balance = balance + 50 where id = 1,balance沒有變成500+50=550,lilei的balance值用的是步驟(4)中的550來算的,所以是600,數據的一致性倒是沒有被破壞。可重復讀的隔離級別下使用了MVCC機制,select操作不會更新版本號,是快照讀(歷史版本);insert、update和delete會更新版本號,是當前讀(當前版本)。
(7)重新打開Session_2 客戶端B,插入一條新數據后提交
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('wang', '1111');
SELECT * FROM account;
(8)在Session_1客戶端A查詢表account的所有記錄,沒有 查出 新增數據,奇怪沒有出現幻讀??
(9)更新操作出現幻讀
UPDATE account SET balance = balance + 50 where id = 5;
SELECT * FROM account;
結論:可重復讀事務隔離級別(REPEATABLE-READ)未出現臟讀和不可重復讀的問題,但是出現幻讀問題。
4..串行化 Serializable
串行化就是把事務串行執行而非并發執行,但是執行效率低。
mysql中事務隔離級別為serializable時會鎖表,因此不會出現幻讀的情況,這種隔離級別并發性極低,開發中很少會用到。
Mysql默認級別是repeatable-read,有辦法解決幻讀問題嗎?
間隙鎖在某些情況下可以解決幻讀問題
要避免幻讀可以用間隙鎖在Session_1下面執行update account set name = 'zhuge' where id > 10 and id <=20;,則其他Session沒法插入這個范圍內的數據
2.2.4 案例結論
Innodb存儲引擎由于實現了行級鎖定,雖然在鎖定機制的實現方面所帶來的性能損耗可能比表級鎖定會要更高一下,但是在整體并發處理能力方面要遠遠優于MYISAM的表級鎖定的。當系統并發量高的時候,Innodb的整體性能和MYISAM相比就會有比較明顯的優勢了。
但是,Innodb的行級鎖定同樣也有其脆弱的一面,當我們使用不當的時候,可能會讓Innodb的整體性能表現不僅不能比MYISAM高,甚至可能會更差。
2.2.5 行鎖分析
通過檢查InnoDB_row_lock狀態變量來分析系統上的行鎖的爭奪情況
show status like'innodb_row_lock%';
對各個狀態量的說明如下:
Innodb_row_lock_current_waits: 當前正在等待鎖定的數量
Innodb_row_lock_time: 從系統啟動到現在鎖定總時間長度
Innodb_row_lock_time_avg: 每次等待所花平均時間
Innodb_row_lock_time_max:從系統啟動到現在等待最長的一次所花時間
Innodb_row_lock_waits:系統啟動后到現在總共等待的次數
對于這5個狀態變量,比較重要的主要是:
Innodb_row_lock_time_avg (等待平均時長)
Innodb_row_lock_waits (等待總次數)
Innodb_row_lock_time(等待總時長)
尤其是當等待次數很高,而且每次等待時長也不小的時候,我們就需要分析系統中為什么會有如此多的等待,然后根據分析結果著手制定優化計劃。
2.2.6 死鎖
set tx_isolation='repeatable-read';
Session_1執行:select * from account where id=1 for update;
Session_2執行:select * from account where id=2 for update;
Session_1執行:select * from account where id=2 for update;
Session_2執行:select * from account where id=1 for update;
查看近期死鎖日志信息:show engine innodb status\G;
大多數情況mysql可以自動檢測死鎖并回滾產生死鎖的那個事務,但是有些情況mysql沒法自動檢測死鎖
2.2.7 優化建議
- 盡可能讓所有數據檢索都通過索引來完成,避免無索引行鎖升級為表鎖
- 合理設計索引,盡量縮小鎖的范圍
- 盡可能減少檢索條件,避免間隙鎖
- 盡量控制事務大小,減少鎖定資源量和時間長度
- 盡可能低級別事務隔離