sklearn中ConfusionMatrix

sklearn輸出的評價矩陣

# algorithm1:LogisticRegression
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print CutoffLine
# print(metrics.classification_report(expected, predicted))
classification_report = metrics.classification_report(expected, predicted)
print classification_report
print CutoffLine
confusion_matrix = metrics.confusion_matrix(expected, predicted)
print confusion_matrix
# print(metrics.confusion_matrix(expected, predicted))

輸出結果

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
             precision    recall  f1-score   support

        0.0       0.79      0.89      0.84       500
        1.0       0.74      0.55      0.63       268

avg / total       0.77      0.77      0.77       768

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
[[447  53]
 [120 148]]

結果分析

TP = confusion_matrix[0,0]; FN = confusion_matrix[0,1] 
FP = confusion_matrix[1,0]; TN = confusion_matrix[1,1]
print u"TP, FN, FP, TN的值依次是:", TP, FN, FP, TN

print CutoffLine
from __future__  import division
################################################
"""
Matrix
     0     1
0    TP    FN
1    FP    TN
precison = TP/(TP+FP)
  recall = TP/(TP+FN)
      F1 = (2 * precision * recall)/(precision + recall)
Precision:被檢測出來的信息當中 正確的或者相關的(也就是你想要的)信息中所占的比例;
Recall:所有正確的信息或者相關的信息(wanted)被檢測出來的比例。
F1綜合了P和R的結果,當F1較高時則比較說明實驗方法比較理想。
"""
################################################
precision_0 = round((TP/(TP + FP)), 2)
recall_0 = round((TP /(TP + FN)), 2)
f1_score_0 = round((2 * precision_0 * recall_0 /(precision_0 + recall_0)), 2)
support_0 = TP + FN
print u"把結果0看成正例時:", precision_0, recall_0, f1_score_0, support_0

print CutoffLine
################################################
"""precison = TN/(TN+FN);
     recall = TN/(TN+FP)
         F1 = (2 * precision * recall)/(precision + recall)"""
################################################
precision_1 = round((TN/(TN+FN)), 2)
recall_1 = round((TN/(TN+FP)),2)
f1_score_1 = round((2 * precision_1 * recall_1 /(precision_1 + recall_1)), 2)
support_1 = FP + TN
print u"把結果1看成正例時:", precision_1, recall_1, f1_score_1, support_1

print CutoffLine
f1_score_avg = recall_avg = precision_avg = round(((148 + 447)/768),2)
print u"平均結果:", precision_avg, recall_avg, f1_score_avg, TP + FN + FP + TN 

輸出結果

TP, FN, FP, TN的值依次是: 447 53 120 148
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
把結果0看成正例時: 0.79 0.89 0.84 500
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
把結果1看成正例時: 0.74 0.55 0.63 268
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
平均結果: 0.77 0.77 0.77 768

幾點備注:1. sklearn輸出的混淆矩陣中,橫軸為預測結果,縱軸為實際結果。參考以下文章。

參考:基于混淆矩陣的評價指標
識別任務中混淆矩陣(Confusion Matrix)用于評價算法好壞的指標。下圖是一個二分類問題的混淆矩陣:


TP:正確肯定——實際是正例,識別為正例
FN:錯誤否定(漏報)——實際是正例,卻識別成了負例
FP:錯誤肯定(誤報)——實際是負例,卻識別成了正例
TN:正確否定——實際是負例,識別為負例

相關術語:
AccuracyRate(準確率): (TP+TN)/(TP+TN+FN+FP)
ErrorRate(誤分率): (FN+FP)/(TP+TN+FN+FP)
Recall(召回率,查全率,擊中概率): TP/(TP+FN), 在所有GroundTruth為正樣本中有多少被識別為正樣本了;
Precision(查準率):TP/(TP+FP),在所有識別成正樣本中有多少是真正的正樣本;
TPR(TruePositive Rate): TP/(TP+FN),實際就是Recall
FAR(FalseAcceptance Rate)或FPR(False Positive Rate):FP/(FP+TN), 錯誤接收率,誤報率,在所有GroundTruth為負樣本中有多少被識別為正樣本了;
FRR(FalseRejection Rate): FN/(TP+FN),錯誤拒絕率,拒真率,在所有GroundTruth為正樣本中有多少被識別為負樣本了,它等于1-Recall

ROC曲線(receiver operatingcharacteristic curve)


橫軸是FAR,縱軸是Recall;

每個閾值的識別結果對應一個點(FPR,TPR),當閾值最大時,所有樣本都被識別成負樣本,對應于右上角的點(0,0),當閾值最小時,所有樣本都被識別成正樣本,對應于右上角的點(1,1),隨著閾值從最大變化到最小,TP和FP都逐漸增大;

一個好的分類模型應盡可能位于圖像的左上角,而一個隨機猜測模型應位于連接點(TPR=0,FPR=0)和(TPR=1,FPR=1)的主對角線上;

可以使用ROC曲線下方的面積AUC(AreaUnder roc Curve)值來度量算法好壞:如果模型是完美的,那么它的AUG = 1,如果模型是個簡單的隨機猜測模型,那么它的AUG = 0.5,如果一個模型好于另一個,則它的曲線下方面積相對較大;

ERR(Equal Error Rate,相等錯誤率):FAR和FRR是同一個算法系統的兩個參數,把它放在同一個坐標中。FAR是隨閾值增大而減小的,FRR是隨閾值增大而增大的。因此它們一定有交點。這個點是在某個閾值下的FAR與FRR等值的點。習慣上用這一點的值來衡量算法的綜合性能。對于一個更優的指紋算法,希望在相同閾值情況下,FAR和FRR都越小越好。

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,546評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,570評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,505評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,017評論 1 313
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,786評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,219評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,287評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,438評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,971評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,796評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,995評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,540評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,230評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,662評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,918評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,697評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,991評論 2 374

推薦閱讀更多精彩內容