接著上一篇文章常用的排序,繼續說排序,剩下的還有直接插入排序,直接選擇排序和堆排序,默認排序順序仍是遞增排序。廢話不多說了,開始進入正題。
插入排序
其實分為:直接插入排序
,二分插入排序
(或折半插入排序),希爾排序
,其基本思想就是:每次將一個待排序的記錄,按其關鍵字的大小插入到前面已經排好序的子表
中的適當位置,直到全部記錄插入完成為止。在這里只介紹直接插入排序。
直接插入排序
直接先來代碼好了。
void InsertSort(RecType R[],int n)
{
int i,j;
RecType tmp;
for (int i = 1; i < n; i++)
{
tmp = R[i];
j = i - 1;
while(j >= 0 && tmp.key < R[j].key)
{
R[j+1] = R[j];
j--;
}
R[j+1] = tmp;
}
}
此排序的操作過程為:假設有一序列為(6,3,7,5,1,4,2,9),剛開始時i = 1,j = 0,有序區暫時只有R[0]一個記錄。從6起,從右向左查找,3小于6,將6右移一個位置,j-- 后while條件不滿足了,結束while循環,將3插入R[0]的位置,此時序列變為(3,6,7,5,1,4,2,9),第一趟排序結束。接下來第二趟排序,i = 2,待插入的記錄為R[2] = 7,從6開始從右向左查找。7大于6,while條件不滿足,所以7的位置不變。此時序列變為(3,6,7,5,1,4,2,9),第三趟排序...以此類推,直到所有記錄都有序為止。
初始序列:6 3 7 5 1 4 2
i = 1: <b><u>3</u></b> 6 7 5 1 4 2 9
i = 2: 3 6 <b> <u>7</u></b> 5 1 4 2 9
i = 3: 3 <b><u>5</u></b> 6 7 1 4 2 9
i = 4: <b><u>1</u></b> 3 5 6 7 4 2 9
i = 5: 1 3 <b> <u>4</u></b> 5 6 7 2 9
i = 6: 1 <b><u>2</u></b> 3 4 5 6 7 9
i = 7: 1 2 3 4 5 6 7 <b> <u>9</u></b>
選擇排序的基本思想是:每一趟排序是從待排序的記錄中選出關鍵字最小的記錄,順序放在已排好序的記錄序列的末尾
,直到全部記錄排序完畢。常用的選擇排序方法有直接選擇排序(或簡單選擇排序)以及 堆排序。
直接選擇排序
void selectSort(RecType R[],int n)
{
int i,j,k;
RecType tmp;
for (int i = 0; i < n - 1; i++)
{
k = i;
for (int j = i + 1; j < n; j++)
if (R[j].key < R[k].key)
k = j;
if (k != i)
{
tmp = R[i];
R[i] = R[k];
R[k] = tmp;
}
}
}
此排序的操作過程為:還是以序列為(6,3,7,5,1,4,2,9)的例子來說吧。剛開始時 i = 0,假設i = 0這個位置對應的關鍵字是最小的,從i+1開始,在6后面的序列中找到最小的那個記錄,用 k 記下第一趟排序后目前找到的最小的關鍵字所在的位置,判斷 k 是否等于 i,不相等,說明最小值的位置發生了變化,需要交換下R[i] 和 R[k],此時序列為(1,3,7,5,6,4,2,9)。接著第二趟排序開始...以此類推,經過n - 1趟排序后,整個序列遞增有序。
初始序列:6 3 7 5 1 4 2 ,排序過程如下所示:
堆排序
待續 O(∩_∩)O