字符串匹配的KMP算法(轉)

作者:阮一峰
原文鏈接:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

字符串匹配是計算機的基本任務之一。
舉例來說,有一個字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一個字符串"ABCDABD"?


許多算法可以完成這個任務,Knuth-Morris-Pratt算法(簡稱KMP)是最常用的之一。它以三個發明者命名,起頭的那個K就是著名科學家Donald Knuth。

這種算法不太容易理解,網上有很多解釋,但讀起來都很費勁。直到讀到Jake Boxer的文章,我才真正理解這種算法。下面,我用自己的語言,試圖寫一篇比較好懂的KMP算法解釋。


首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一個字符與搜索詞"ABCDABD"的第一個字符,進行比較。因為B與A不匹配,所以搜索詞后移一位。


因為B與A不匹配,搜索詞再往后移。


就這樣,直到字符串有一個字符,與搜索詞的第一個字符相同為止。


接著比較字符串和搜索詞的下一個字符,還是相同。


直到字符串有一個字符,與搜索詞對應的字符不相同為止。


這時,最自然的反應是,將搜索詞整個后移一位,再從頭逐個比較。這樣做雖然可行,但是效率很差,因為你要把"搜索位置"移到已經比較過的位置,重比一遍。


一個基本事實是,當空格與D不匹配時,你其實知道前面六個字符是"ABCDAB"。KMP算法的想法是,設法利用這個已知信息,不要把"搜索位置"移回已經比較過的位置,繼續把它向后移,這樣就提高了效率。


怎么做到這一點呢?可以針對搜索詞,算出一張《部分匹配表》(Partial Match Table)。這張表是如何產生的,后面再介紹,這里只要會用就可以了。


已知空格與D不匹配時,前面六個字符"ABCDAB"是匹配的。查表可知,最后一個匹配字符B對應的"部分匹配值"為2,因此按照下面的公式算出向后移動的位數:
  移動位數 = 已匹配的字符數 - 對應的部分匹配值

因為 6 - 2 等于4,所以將搜索詞向后移動4位。


因為空格與C不匹配,搜索詞還要繼續往后移。這時,已匹配的字符數為2("AB"),對應的"部分匹配值"為0。所以,移動位數 = 2 - 0,結果為 2,于是將搜索詞向后移2位。


因為空格與A不匹配,繼續后移一位。


逐位比較,直到發現C與D不匹配。于是,移動位數 = 6 - 2,繼續將搜索詞向后移動4位。


逐位比較,直到搜索詞的最后一位,發現完全匹配,于是搜索完成。如果還要繼續搜索(即找出全部匹配),移動位數 = 7 - 0,再將搜索詞向后移動7位,這里就不再重復了。


下面介紹《部分匹配表》是如何產生的。
首先,要了解兩個概念:"前綴"和"后綴"。 "前綴"指除了最后一個字符以外,一個字符串的全部頭部組合;"后綴"指除了第一個字符以外,一個字符串的全部尾部組合。


"部分匹配值"就是"前綴"和"后綴"的最長的共有元素的長度。以"ABCDABD"為例,
  - "A"的前綴和后綴都為空集,共有元素的長度為0;
  - "AB"的前綴為[A],后綴為[B],共有元素的長度為0;
  - "ABC"的前綴為[A, AB],后綴為[BC, C],共有元素的長度0;
  - "ABCD"的前綴為[A, AB, ABC],后綴為[BCD, CD, D],共有元素的長度為0;
  - "ABCDA"的前綴為[A, AB, ABC, ABCD],后綴為[BCDA, CDA, DA, A],共有元素為"A",長度為1;
  - "ABCDAB"的前綴為[A, AB, ABC, ABCD, ABCDA],后綴為[BCDAB, CDAB, DAB, AB, B],共有元素為"AB",長度為2;
  - "ABCDABD"的前綴為[A, AB, ABC, ABCD, ABCDA, ABCDAB],后綴為[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的長度為0。


"部分匹配"的實質是,有時候,字符串頭部和尾部會有重復。比如,"ABCDAB"之中有兩個"AB",那么它的"部分匹配值"就是2("AB"的長度)。搜索詞移動的時候,第一個"AB"向后移動4位(字符串長度-部分匹配值),就可以來到第二個"AB"的位置。
(完)

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,527評論 6 544
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,687評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,640評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,957評論 1 318
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,682評論 6 413
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,011評論 1 329
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,009評論 3 449
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,183評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,714評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,435評論 3 359
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,665評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,148評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,838評論 3 350
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,251評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,588評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,379評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,627評論 2 380

推薦閱讀更多精彩內容