用Scrapy采集公管學院新聞

采集對象:四川大學公共管理學院新聞動態及內容
爬取規則:用css選擇器的方法來進行元素定位

采集過程

激活,進入虛擬環境


1.png

創建項目


2.png

修改items.py文件

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

class GgnewsItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()
    time = scrapy.Field()
    content = scrapy.Field()
    img = scrapy.Field()

編寫爬蟲

import scrapy

from ggnews.items import GgnewsItem

class GgnewsSpider(scrapy.Spider):
    name = "spidernews"
    start_urls = [
        'http://ggglxy.scu.edu.cn/index.php?c=special&sid=1',
    ]

    def parse(self, response):
        for href in response.css('div.pb30.mb30 div.right_info.p20.bgf9 ul.index_news_ul.dn li a.fl::attr(href)'):
            url = response.urljoin(href.extract())
            yield scrapy.Request(url, callback=self.parse2)

            next_page = response.css('div.w100p div.px_box.w1000.auto.ovh.cf div.pb30.mb30 div.mobile_pager.dn li.c::text').extract_first()
            if next_page is not None:
                next_url = int(next_page) + 1
                next_urls = '?c=special&sid=1&page=%s' % next_url
                print next_urls
                next_urls = response.urljoin(next_urls)
                yield scrapy.Request(next_urls,callback = self.parse)

    def parse2(self, response):
        items = []
        for new in response.css('div.w1000.auto.cf div.w780.pb30.mb30.fr div.right_info.p20'):
                item = GgnewsItem()
                item['title'] = new.css('div.detail_zy_title h1::text').extract_first(),
                item['time'] = new.css('div.detail_zy_title p::text').extract_first(),
                item['content'] = new.css('div.detail_zy_c.pb30.mb30 p span::text').extract(),
                item['img'] = new.css('div.detail_zy_c.pb30.mb30 p.MsoNormal img::attr(src)').extract(),
                items.append(item)

        return items

將爬蟲文件拖進spiders文件夾下

3.png

4.png

執行爬蟲

scrapy crawl spidernews -o spidernews.xml

(開始幾次一直出現 ImportError: No module named items的錯誤,查百度發現時spiders 目錄中的.py文件不能和項目名同名的問題,對其文件名進行修改)


5.png
scrapy crawl spidernews -o spidernews.json
7.png

得到數據


6.png
8.png
9.png
10.png
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,732評論 6 539
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,214評論 3 426
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,781評論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,588評論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,315評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,699評論 1 327
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,698評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,882評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,441評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,189評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,388評論 1 372
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,933評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,613評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,023評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,310評論 1 293
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,112評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,334評論 2 377

推薦閱讀更多精彩內容