2.docker services

配置docker的負載均衡


1.建立一個文件docker-compose.yml,具體內容如下:


This docker-compose.yml file tells Docker to do the following:(具體解釋如下)

Run five instances of?the image we uploaded in step 2?as a service called web, limiting each one to use, at most, 10% of the CPU (across all cores), and 50MB of RAM.

# 運行我們之前制作好放置到docker倉庫的docker 鏡像,限制每個使用的資源為10%的CPU和50MB的內存

Immediately restart containers if one fails. ?# 如果失敗快速重啟

Map port 80 on the host to web’s port 80. # 映射到外部的80端口

Instruct web’s containers to share port 80 via a load-balanced network called web net. (Internally, the containers themselves will publish to web’s port 80 at an ephemeral port.)

# 通過負載均衡分享80端口

Define the web net network with the default settings (which is a load-balanced overlay network).

#用默認的設置定義網絡





2.Run your new load-balanced app

Before we can use the docker stack deploy command we’ll first run(用doker stack deploy命令之前必須先執行下邊的命令)

[root@host1 ~]#docker swarm init

Note: We’ll get into the meaning of that command in?part 4. If you don’t run docker swarm init you’ll get an error that “this node is not a swarm manager.”

Now let’s run it. You have to give your app a name – here it is set to getstartedlab:

# 運行命令,之前要先起一個名字,這里設置的是getstartedlab

[root@host1 ~]#docker stack deploy -c docker-compose.yml getstartedlab

See a list of the five containers you just launched:

[root@host1 ~]#docker stack ps getstartedlab

You can run curl http://localhost several times in a row, or go to that URL in your browser and hit refresh a few times. Either way, you’ll see the container ID randomly change, demonstrating the load-balancing; with each request, one of the five replicas is chosen at random to respond.

# 通過網址訪問刷新,會看到頁面的容器ID 不斷的發生變化,演示著負載均衡的效果,隨機的五選一來回復


3.Scale the app(規?;瘧?)

You can scale the app by changing the replicas value in docker-compose.yml, saving the change, and re-running the docker stack deploy command:(當docker-compose.yml文件的內容發生變化時,可以通過重新執行docker stack deploy -c docker-compose.yml getstartedlab來重新部署,不需要先關閉再重新啟動

[root@host1 ~]#docker stack deploy -c docker-compose.yml getstartedlab

Docker will do an in-place update, no need to tear the stack down first or kill any containers.


4.Take down the app

Take the app down with docker stack rm:(關閉app)

[root@host1 ~]#docker stack rm getstartedlab

It’s as easy as that to stand up and scale your app with Docker. You’ve taken a huge step towards learning how to run containers in production. Up next, you will learn how to run this app on a cluster of machines.(下一節講述如何在集群運行應用)

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,106評論 6 542
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,441評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 178,211評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,736評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,475評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,834評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,829評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,009評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,559評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,306評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,516評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,038評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,728評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,132評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,443評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,249評論 3 399
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,484評論 2 379

推薦閱讀更多精彩內容