數學論文(雞兔同籠)

大家好,我家祖悅涵,今天我給大家帶來了一篇論文,雞兔同籠。

雞兔同籠是中國古代的數學名題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:

今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?

這四句話的意思是:

有若干只雞兔同在一個籠子里,從上面數,有35個頭,從下面數,有94只腳。問籠中各有多少只雞和兔?

算這個有個最簡單的算法。

(總腳數-總頭數×雞的腳數)÷(兔的腳數-雞的腳數)=兔的只數

(94-35×2)÷2=12(兔子數) 總頭數(35)-兔子數(12)=雞數(23)

解釋:讓兔子和雞同時抬起兩只腳,這樣籠子里的腳就減少了總頭數×2只,由于雞只有2只腳,所以籠子里只剩下兔子的兩只腳,再÷2就是兔子數。

現在,我們已經對雞兔同籠有了初步的了解,下面看看解有什么方法吧。

方程法

一元一次方程

解:設兔有x只,則雞有(35-x)只。

4x+2(35-x)=94

解得 x=12

雞:35-12=23(只)

解:設雞有x只,則兔有(35-x)只。


抬腿法

方法一

假如讓雞抬起一只腳,兔子抬起2只腳,還有94÷2=47(只)腳。籠子里的兔就比雞的腳數多1,這時,腳與頭的總數之差47-35=12,就是兔子的只數。

方法二

假如雞與兔子都抬起兩只腳,還剩下94-35×2=24只腳 , 這時雞是屁股坐在地上,地上只有兔子的腳,而且每只兔子有兩只腳在地上,所以有24÷2=12只兔子,就有35-12=23只雞。

方法三

我們可以先讓兔子都抬起2只腳,那么就有35×2=70只腳,腳數和原來差94-70=24只腳,這些都是每只兔子抬起2只腳,一共抬起24只腳,用24÷2得到兔子有12只,用35-12得到雞有23只。

公式

公式1:(兔的腳數×總只數-總腳數)÷(兔的腳數-雞的腳數)=雞的只數

總只數-雞的只數=兔的只數

公式2:( 總腳數-雞的腳數×總只數)÷(兔的腳數-雞的腳數)=兔的只數

總只數-兔的只數=雞的只數

公式3:總腳數÷2—總頭數=兔的只數

總只數—兔的只數=雞的只數

公式4:雞的只數=(4×雞兔總只數-雞兔總腳數)÷2 兔的只數=雞兔總只數-雞的只數

公式5:兔總只數=(雞兔總腳數-2×雞兔總只數)÷2 雞的只數=雞兔總只數-兔總只數

公式6 :4×+2(總數-x)=總腳數 (x=兔,總數-x=雞數,用于方程)

解題思路編輯

理解

中國古代《孫子算經》共三卷,成書大約在公元5世紀。這本書淺顯易懂,有許多有趣的算術題,比如“雞兔同籠”問題:


今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?

題目中給出雉兔共有35只,如果把兔子的兩只前腳用繩子捆起來,看作是一只腳,兩只后腳也用繩子捆起來,看作是一只腳,那么,兔子就成了2只腳,即把兔子都先當作兩只腳的 雞。雞兔總的腳數是35×2=70(只),比題中所說的94只要少94-70=24(只)。

松開一只兔子腳上的繩子,總的腳數就會增加2只,即70+2=72(只),再松開一只兔子腳上的繩子,總的腳數又增加2,2,2,2……,一直繼續下去,直至增加24,因此兔子數:24÷2=12(只),從而雞有35-12=23(只)。

我們來總結一下這道題的解題思路:如果先假設它們全是雞,于是根據雞兔的總數就可以算出在假設下共有幾只腳,把這樣得到的腳數與題中給出的腳數相比較,看看差多少,每差2只腳就說明有1只兔,將所差的腳數除以2,就可以算出共有多少只兔。概括起來,解雞兔同籠題的基本關系式是:兔數=(實際腳數-每只雞腳數×雞兔總數)÷(每只兔子腳數-每只雞腳數)。類似地,也可以假設全是兔子。

思路

"雞兔同籠"是一類有名的中國古算題。最早出現在《孫子算經》中。許多小學算術應用題都可以轉化成這類問題,或者用解它的典型解法--"假設法"來求解。因此很有必要學會它的解法和思路。

例1: 有若干只雞和兔子,它們共有88個頭,244只腳,雞和兔各有多少只

解:我們設想,每只雞都是"金雞獨立",一只腳站著;而每只兔子都用兩條后腿,像人一樣用兩只腳站著,地面上出現腳的總數的一半,·也就是

244÷2=122(只)

在122這個數里,雞的頭數算了一次,兔子的頭數相當于算了兩次。因此從122減去總頭數88,剩下的就是兔子頭數

122-88=34(只),

有34只兔子,當然雞就有54只。

答:有兔子34只,雞54只。

上面的計算,可以歸結為下面算式:

總腳數÷2-總頭數=兔子數. 總頭數-兔子數=雞數

上面的解法是《孫子算經》中記載的。做一次除法和一次減法,馬上能求出兔子數,多簡單!能夠這樣算,主要利用了兔和雞的腳數分別是4和2,4又是2的2倍.可是,當其他問題轉化成這類問題時,"腳數"就不一定是4和2,上面的計算方法就行不通。因此,我們對這類問題給出一種一般解法.

還說例1.

如果設想88只都是兔子,那么就有4×88只腳,比244只腳多了

88×4-244=108(只).

每只雞比兔子少(4-2)只腳,所以共有雞

(88×4-244)÷(4-2)= 54(只).

說明我們設想的88只"兔子"中,有54只不是兔子。而是雞.因此可以列出公式

雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數).

當然,我們也可以設想88只都是"雞",那么共有腳2×88=176(只),比244只腳少了

244-176=68(只).

每只雞比每只兔子少(4-2)只腳,

68÷2=34(只).

說明設想中的"雞",有34只是兔子,也可以列出公式

兔數=(總腳數-雞腳數×總頭數)÷(兔腳數-雞腳數).

上面兩個公式不必都用,用其中一個算出兔數或雞數,再用總頭數去減,就知道另一個數。

假設全是雞,或者全是兔,通常用這樣的思路求解,有人稱為"假設法".

拿一個具體問題來試試上面的公式。

例2 紅鉛筆每支0.19元,藍鉛筆每支0.11元,兩種鉛筆共買了16支,花了2.80元。問紅,藍鉛筆各買幾支?

解:以"分"作為錢的單位.我們設想,一種"雞"有11只腳,一種"兔子"有19只腳,它們共有16個頭,280只腳。

現在已經把買鉛筆問題,轉化成"雞兔同籠"問題了.利用上面算兔數公式,就有

藍筆數=(19×16-280)÷(19-11)

=24÷8

=3(支).

紅筆數=16-3=13(支).

答:買了13支紅鉛筆和3支藍鉛筆。

對于這類問題的計算,常常可以利用已知腳數的特殊性.例2中的"腳數"19與11之和是30.我們也可以設想16只中,8只是"兔子",8只是"雞",根據這一設想,腳數是

8×(11+19)=240(支)。

比280少40.

40÷(19-11)=5(支)。

就知道設想中的8只"雞"應少5只,也就是"雞"(藍鉛筆)數是3.

30×8比19×16或11×16要容易計算些。利用已知數的特殊性,靠心算來完成計算.

實際上,可以任意設想一個方便的兔數或雞數。例如,設想16只中,"兔數"為10,"雞數"為6,就有腳數

19×10+11×6=256.

比280少24.

24÷(19-11)=3,

就知道設想6只"雞",要少3只。

要使設想的數,能給計算帶來方便,常常取決于你的心算本領.

例題

例3 一份稿件,甲單獨打字需6小時完成.乙單獨打字需10小時完成,甲單獨打若干小時后,因有事由乙接著打完,共用了7小時。甲打字用了多少小時?

解:我們把這份稿件平均分成30份(30是6和10的最小公倍數),甲每小時打30÷6=5(份),乙每小時打30÷10=3(份).

現在把甲打字的時間看成"兔"頭數,乙打字的時間看成"雞"頭數,總頭數是7."兔"的腳數是5,"雞"的腳數是3,總腳數是30,就把問題轉化成"雞兔同籠"問題了。

根據前面的公式

"兔"數=(30-3×7)÷(5-3)

=4.5,

"雞"數=7-4.5

=2.5

也就是甲打字用了4.5小時,乙打字用了2.5小時。

答:甲打字用了4小時30分.

例4 1998年時,父母年齡(整數)和是78歲,兄弟的年齡和是17歲。四年后(2002年)父的年齡是弟的年齡的4倍,母的年齡是兄的年齡的3倍.那么當父的年齡是兄的年齡的3倍時,是公元哪一年?

解:4年后,兩人年齡和都要加8.此時兄弟年齡之和是17+8=25,父母年齡之和是78+8=86。我們可以把兄的年齡看作"雞"頭數,弟的年齡看作"兔"頭數。25是"總頭數",86是"總腳數"。根據公式,兄的年齡是

(25×4-86)÷(4-3)=14(歲).

1998年,兄年齡是

14-4=10(歲).

父年齡是

(25-14)×4+4=40(歲).

因此,當父的年齡是兄的年齡的3倍時,兄的年齡是

(40-10)÷(3-1)=15(歲).

這是2003年。

答:公元2003年時,父年齡是兄年齡的3倍.

例5蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀,蟬有6條腿和1對翅膀。這三種小蟲共18只,有118條腿和20對翅膀.每種小蟲各幾只?

解:因為蜻蜓和蟬都有6條腿,所以從腿的數目來考慮,可以把小蟲分成"8條腿"與"6條腿"兩種。利用公式就可以算出8條腿的

蜘蛛數=(118-6×18)÷(8-6)

=5(只).

因此就知道6條腿的小蟲共

18-5=13(只).

也就是蜻蜓和蟬共有13只,它們共有20對翅膀。再利用一次公式

蟬數=(13×2-20)÷(2-1)=6(只).

因此蜻蜓數是13-6=7(只).

答:有5只蜘蛛,7只蜻蜓,6只蟬。

例6 某次數學考試考五道題,全班52人參加,共做對181道題,已知每人至少做對1道題,做對1道的有7人,5道全對的有6人,做對2道和3道的人數一樣多,那么做對4道的人數有多少人?

解:對2道,3道,4道題的人共有

52-7-6=39(人).

他們共做對

181-1×7-5×6=144(道).

由于對2道和3道題的人數一樣多,我們就可以把他們看作是對2.5道題的人((2+3)÷2=2.5).這樣

兔腳數=4,雞腳數=2.5,

總腳數=144,總頭數=39.

對4道題的有

(144-2.5×39)÷(4-2.5)=31(人).

答:做對4道題的有31人。

以例1為例 有若干只雞和兔子,它們共有88個頭,244只腳,雞和兔各有多少只?

以簡單的X方程計算的話,我們一般用設大數為X,那么也就是設兔為X,那么雞的只數就是總數減去雞的只數,即(88-X)只。

解:設兔為X只。則雞為(88-X)只。

4X+2×(88-X)=244

上列的方程解釋為:兔子的腳數加上雞的腳數,就是共有的腳數。4X就是兔子的腳數,2×(88-X)就是雞的腳數。

4X+2×88-2X=244

2X+176=244

2X+176-176=244-1

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,106評論 6 542
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,441評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,211評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,736評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,475評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,834評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,829評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,009評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,559評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,306評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,516評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,038評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,728評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,132評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,443評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,249評論 3 399
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,484評論 2 379