用python繪制直方圖

其實,學習數據分析,excel可以完成絕大多數的工作,只是課程中@tiger是用python做的,而且最近自己也在學習編程,所以就挑戰一下新東西,學學用python做作業,感謝@余欣 的教程,讓我一個python小白也能上手做作業,這個作業是在這兩篇教程的基礎上完成的:

  1. 致Python初學者們 - Anaconda入門使用指南
  2. 左手程序員,右手作家:你必須會的Jupyter Notebook

下面開始做作業

1. 下載數據集到本地

一共兩個文件,weight.txt 和 AirPassengers.csv

weight.txt 中包含了一批體重數據,AirPassengers.csv中包含了日期和對應的乘客人數,兩列數據。這次的任務就是求這兩組數據的均值和方差,并畫出直方圖。

2. 建立Jupyter Notebook

把Jupyter Notebook安裝好后,在終端內運行

jupyter notebook

瀏覽器會自動打開一個頁面

這里可以看到電腦的本地文件,在其中找到放置上一步數據文件的文件夾,并在這個目錄下,點擊右上角的“New”,建立一個新的notebook

3. 導入數據,計算和輸出
#在輸入窗口下輸入:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
weight_data = pd.read_table('weight.txt')
weight_data.shape

#按Shift+Enter,就會出現結果
#求均值

weight_data['weight'].mean()
50.7
#求方差

weight_data['weight'].var()
39.27594936708859
fig = plt.figure()
x = weight_data['weight']
ax = fig.add_subplot(111)
numBins = 20
ax.hist(x,numBins,color='blue',alpha=0.8,rwidth=0,9)
plt.grid(true)#
plt.title(u'weight')
plt.show()
#另一組數據,由于是csv格式,所以導入數據的代碼略有不同

Passengers_data = pd.read_csv('AirPassengers.csv')

Passengers_data.shape
(144, 2)
Passengers_data['NumPassengers'].mean()
280.2986111111111
Passengers_data['NumPassengers'].var()
14391.917200854701
fig = plt.figure()
x = Passengers_data['NumPassengers']
ax = fig.add_subplot(111)
numBins = 20
ax.hist(x,numBins,color='blue',alpha=0.8,rwidth=0.9)
plt.title(u'Passengers')
plt.show()
4. 試著描述數據集的特征

這里第一個數據集是體重,大多數都在45-55之間,而有兩個接近70,整體上,數據量不大,但是還是接近正態分布的。

第二個有點撓頭,是從49年 到 60年每個月的乘客數量,這個數據如果用直方圖展示,表達的信息就是乘客數量的分布。可以看出來,從大量集中在350-400之間,400以上的數量很少,而11年來,只有兩個月的乘客數量超過了600。

對于這組數據,因為有時間維度,所以按照月份做一個疊加的柱狀圖,或者以時間為橫軸,以人數為縱軸做一個曲線,似乎更能看出變化的規律所在。不過本次的作業是直方圖,如何做柱狀圖和二維曲線,留給下一次再說吧。

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,606評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,582評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,540評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,028評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,801評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,223評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,294評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,442評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,976評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,800評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,996評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,543評論 5 360
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,233評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,662評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,926評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,702評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,991評論 2 374

推薦閱讀更多精彩內容