pandas中讀取csv文件的一些小技巧

前言:

pandas中讀取csv文件通常使用pd.read_csv()函數,正常情況下給出文件路徑即可讀取數據,不過在某些特殊情況下,需要一些小技巧才能讀取正確的內容

文本型和浮點數的混淆及處理

在處理股票交割單中遇到一個典型的問題,交割單中的原始數據如下:


image.png
df=pd.read_csv(file_address)

使用默認函數讀取數據后并非我們預想的結果,把510300讀取成了510300.0,即文本型數據轉換成浮點數


image.png

強制某列按照某種類型進行讀取,需要調用read_csv中的dtype參數,文檔說明如下:
dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use str or object together with suitable na_values settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.

即添加一個字典型參數,將需要強制轉換類型的列和相應的類型標明即可,注意np.int32需要引入相關定義

import numpy as np
df=pd.read_csv(file_address,dtype={'證券代碼': np.str})
image.png
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,825評論 6 546
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,814評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,980評論 0 384
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 64,064評論 1 319
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,779評論 6 414
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,109評論 1 330
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,099評論 3 450
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,287評論 0 291
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,799評論 1 338
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,515評論 3 361
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,750評論 1 375
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,221評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,933評論 3 351
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,327評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,667評論 1 296
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,492評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,703評論 2 380

推薦閱讀更多精彩內容

  • $$\mathrm{《Python科學計算》學習筆記}$$ [TOC] Numpy 數組入門 數組創建 np.ar...
    篁竹水聲閱讀 766評論 0 0
  • 說明 讀取一個CSV 文件 例子 最全的 一個簡化版本 參數 filepath_or_buffer : str,p...
    喵_十八閱讀 2,974評論 0 0
  • Numpy的組成與功能 Numpy(Numeric Python)可以被理解為一個用python實現的科學計算包,...
    不做大哥好多年閱讀 4,324評論 0 10
  • 昏暗的天空漸漸亮了起來,一個少女睜開了朦朧的雙眼,光照在了她那美麗的面孔上。她就是:黎若曦。 “媽!我...
    白璃墨閱讀 276評論 0 1
  • by王雨欣 呃!從何說起呢? 其實在分班以后我都沒有妄想過會在課堂上看到你講課,還會聽到你那柔柔的聲音,還會聽到你...
    莫莫queen閱讀 277評論 0 0