k-近鄰算法
原理
- k-近鄰算法是一種簡單的分類算法;
- 通過計算測試點(diǎn)與數(shù)據(jù)集點(diǎn)的距離,根據(jù)距離最小的前k個點(diǎn)的類別,來判斷測試點(diǎn)的類別。該判斷有些類似生活中的選舉投票。
參考維基百科上kNN詞條的圖
圖中綠點(diǎn)周圍有紅色三角和藍(lán)色方塊,當(dāng)K=3是,kNN算法將判定綠點(diǎn)為紅色三角;當(dāng)K=5時,kNN算法將判定綠點(diǎn)為藍(lán)色方塊
實(shí)現(xiàn)步驟(摘自書本 )
- 計算已知類別的數(shù)據(jù)點(diǎn)與測試點(diǎn)之間的距離;
- 按照距離遞增排序;
- 選取與當(dāng)前距離最小的k個點(diǎn);
- 確定前k個點(diǎn)所在類別的出現(xiàn)頻率;
- 返回頻率最高的類別作為當(dāng)前點(diǎn)的類別。
k近鄰算法的實(shí)現(xiàn)(python)
def kNN(testSet, dataSet, labels, k):
# 計算歐拉距離
dataSetSize = dataSet.shape[0]
diffMat = tile(testSet, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis = 1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
# 查找最近K個點(diǎn)的類別
classCount = {}
for i in range(k):
votelabel = labels[sortedDistIndicies[i]]
classCount [votelabel] = classCount.get(votelabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(),\
key = operator.itemgetter(1), reverse = True)
# 返回應(yīng)屬類別
return sortedClassCount[0][0]
- 需要說明的地方:
argsort()的返回值為距離排序后的大小序號,比如:
distances = np.array([1.2, 0.5, 4.2, 3.7])
print np.argsort(distances) # [1 0 3 2]
- 在查找最近k個點(diǎn)的類別過程中,累計每個鄰近點(diǎn)的類別出現(xiàn)的次數(shù),返回頻率最高的類別作為當(dāng)前點(diǎn)的類別
- K的取值不一樣,導(dǎo)致的結(jié)果也將不太一樣
實(shí)例
測試集來自
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
樣例:
1000025,5,1,1,1,2,1,3,1,1,2
1002945,5,4,4,5,7,10,3,2,1,2
特征含義:
除了id,其余9維特征可以作為我們的特征向量,而最后的預(yù)測結(jié)果為: 2(良性),4(惡性)
由于元數(shù)據(jù)含有缺失值,如:(1057013,8,4,5,1,2,?,7,3,1,4 )
可以考慮將這部分樣例刪去
實(shí)例代碼
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from numpy import *
import operator
import pandas as pd
import random
def getMat():
fr = open('breast-cancer-wisconsin.data')
lines = fr.readlines()
raw_lines = lines
# 刪除含有缺失值的樣本
for line in lines:
if line.find('?') != -1:
raw_lines.remove(line)
numberOfline = len(raw_lines)
returnMat = zeros((numberOfline, 10))
index = 0
for line in raw_lines:
line = line.strip().split(',')
line1 = [int(x) for x in line]
returnMat[index:] = line1[1:]
index += 1
return returnMat
def kNN(testSet, dataSet, labels, k):
# 計算歐拉距離
dataSetSize = dataSet.shape[0]
diffMat = tile(testSet, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis = 1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
# 查找最近K個點(diǎn)的類別
classCount = {}
for i in range(k):
votelabel = labels[sortedDistIndicies[i]]
classCount [votelabel] = classCount.get(votelabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(),\
key = operator.itemgetter(1), reverse = True)
# 返回應(yīng)屬類別
return sortedClassCount[0][0]
if __name__ == '__main__':
dataMat = getMat()
ratio = 0.2 # 樣本中20%的數(shù)據(jù)用于測試
numberTest = int(0.2 * len(dataMat))
random.shuffle(dataMat) # 將樣本隨機(jī)化
dataTrain = dataMat[numberTest:len(dataMat), 0:-1]
dataTrainLabel = dataMat[numberTest:len(dataMat), -1]
dataTest = dataMat[0:numberTest, 0:-1]
dataTestLabel = dataMat[0:numberTest, -1]
errorNum = 0
for i in range(numberTest):
testResult = kNN(dataTest[i,:], dataTrain, dataTrainLabel, 7)
print "came back: %d, the true answer is: %d" % (testResult, dataTestLabel[i])
if (testResult != dataTestLabel[i]):
errorNum += 1
print "error rate is: %f" % (errorNum/float(numberTest))
print errorNum, numberTest
運(yùn)行結(jié)果如下:
結(jié)果分析
可以看出kNN算法準(zhǔn)確性比較高
但是計算量大,需要計算大量的點(diǎn)距離,當(dāng)樣本特征較多時(1000+),運(yùn)行效率較低,因此不太適合大數(shù)據(jù)運(yùn)算
參考: