拋物線及圓曲定值問題

拋物線

定義:到一定點與到一定直線的距離相等的點的軌跡.

標準方程:y^2=2px\;(p>0)
焦點:F(\dfrac{p}{2},0)
準線:x=-\dfrac{p}{2}

|PF|=\dfrac{p}{2}+x_{1}

過焦點弦長 |CD|=x_1+\dfrac{p}{2}+x_2+\dfrac{p}{2}=x_1+x_2+p.

焦點弦長最短為通徑,長為 2p

拋物線切線方程:y_0y=p(x+x_0).

過拋物外 y^2=2px 外一點 P(x_0,y_0) 所引兩條切線的切點弦方程是 y_0y=p(x+x_0).

拋物線 y^2=2px\;(p>0)與直線 Ax+By+C=0 相切的條件是 pB^2=2AC


例1

過點 M(p,0) 任作直線交拋物線 y^2=2px\;(p>0)P、Q 兩點,則 \dfrac{1}{|MP|^2}+\dfrac{1}{|MQ|^2} 的值為______.

Sol:

設(shè)直線 l: x=p+my 兩交點分別為 P(x_1,y_1)、Q(x_2,y_2)
\begin{cases} x=p+my\\ y^2=2px \end{cases} \Rightarrow y^2-2pmy-2p^2=0

由韋達定理有
\begin{cases} y_1+y_2=2pm\\ y_1y_2=-2p^2\\ \end{cases}

|MP|=\sqrt{(x_1-p)^2+y_1^2}=|y_1|\sqrt{1+m^2}
|MQ|=\sqrt{(x_2-p)^2+y_2^2}=|y_2|\sqrt{1+m^2}

\begin{aligned} &\dfrac{1}{|MP|^2}+\dfrac{1}{|MQ|^2}\\ =&\dfrac{1}{(1+m^2)y_1^2}+\dfrac{1}{(1+m^2)y_2^2}\\ =&\dfrac{1}{1+m^2}\cdot\dfrac{y_1^2+y_2^2}{y_1^2y_2^2}=\dfrac{1}{1+m^2}\cdot\dfrac{y_1^2+y_2^2+2y_1y_2-2y_1y_2}{y_1^2y_2^2}\\ =&\dfrac{1}{1+m^2}\cdot\dfrac{(y_1+y_2)^2-2y_1y_2}{y_1^2y_2^2} \end{aligned}

把韋達定理帶入得

\begin{aligned} &\dfrac{1}{|MP|^2}+\dfrac{1}{|MQ|^2}\\ =&\dfrac{1}{1+m^2}\cdot\dfrac{4p^2m^2+4p^2}{p^4}\\ =&\dfrac{1}{p^2} \end{aligned}


Sol2:

取特值,當取直線 x=p 時,得
P(p,\sqrt{2}p)、Q(p,-\sqrt{2}p)
\dfrac{1}{|MP|^2}+\dfrac{1}{|MQ|^2}=\dfrac{1}{2p^2}+\dfrac{1}{2p^2}=\dfrac{1}{p^2}


例2

在橢圓 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 上兩點 A、B 于中心 O 的連線相互垂直,則 \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2} 的值為______.

Sol:

設(shè) OA 所在的直線為 l_1:y=kx\,(k\not=0)
易知得 OB 所在的直線為 l_2:y=-\dfrac{1}{k}x
A(x_1,y_1)、B(x_2,y_2)
\begin{cases} y=kx\\ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\\ \end{cases}\Rightarrow(a^2k^2+b^2)x^2=a^2b^2

\because A 為直線 l_1 與橢圓的交點
\thereforex_1=\dfrac{a^2b^2}{a^2k^2+b^2}
同理有
x_2=\dfrac{a^2b^2k^2}{a^2+b^2k^2}
\therefore|OA|=\sqrt{x_1^2+y_1^2}=\sqrt{1+k^2}|x_1|
|OB|=\sqrt{1+k^2}\dfrac{|x_2|}{|k|}
\begin{aligned} \therefore&\dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}\\ =&\dfrac{a^2k^2+b^2}{(1+k^2)a^2b^2}+\dfrac{k^2(a^2+b^2k^2)}{(1+k^1)(a^2b^2k^2)}\\ =&\dfrac{1}{a^2}+\dfrac{1}{b^2} \end{aligned}

l_1x 軸或 y 軸重合時,易知 \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}

Sol2:

取特殊情況:
l_1x 軸重合時,易知 \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}


例3

橢圓方程 \dfrac{x^2}{3}+\dfrac{2y^2}{3}=1, 過原點的直線 l 與橢圓 C 交于 A、B 兩點,橢圓 C 上一點滿足 |MA|=|MB|,求證 \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2} 為定值.

Sol:

AB 所在直線 l_1x 軸重合時,
易知 A、B 為左右頂點 |OA|=|OB|=\sqrt{3}
M 為上頂點或下頂點,有 |OM|=\dfrac{\sqrt{6}}{2}
\therefore \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2}=\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{4}{3}=2

同理,當 AB 所在直線 l_1x 軸重合時,
|OA|=|OB|=\dfrac{\sqrt{6}}{2},\;|OM|=\sqrt{3}
\therefore \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2}=2

AB 所在直線不與坐標軸重合時,設(shè)直線 l_1:y=kx
\because|MA|=|MB|
又易知 |OA|=|OB|
\therefore MAB 的垂直平分線上.
\therefore 設(shè) OM 所在直線為 l_2:y=-\dfrac{1}{k}x
\begin{cases} x^2+2y^2=3\\ y=kx\\ \end{cases}\Rightarrow(2k^2+1)x^2=3

\therefore |OA|=\sqrt{x^2+y^2}=\sqrt{1+k^2}|x|
\begin{cases} x^2+2y^2=3\\ y=-\dfrac{1}{k}x\\ \end{cases}\Rightarrow(k^2+2)y^2=3

\therefore |OM|=\sqrt{x^2+y^2}=\sqrt{1+k^2}|y|

\begin{aligned} \therefore&\dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2}\\ =&\dfrac{2k^2+1}{3(1+k^2)}+\dfrac{2k^2+1}{3(1+k^2)}+\dfrac{2(k^2+2)}{3(1+k^2)}\\ =&2. \end{aligned}

Sol2:

取特殊位置:
AB 所在直線 l_1x 軸重合時,
易知 A、B 為左右頂點 |OA|=|OB|=\sqrt{3}
M 為上頂點或下頂點,有 |OM|=\dfrac{\sqrt{6}}{2}
\therefore \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2}=\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{4}{3}=2


例4

易知橢圓方程 \dfrac{x^2}{4}+y^2=1,\,A(2,0),\,B(0,1),設(shè)點 P 是橢圓上的一點,P 異于 A、B,直線 PAy 軸交于點 M,直線 PBx 軸交于點 N,求證 |AN|\cdot|BM| 為定值.

Sol:

設(shè) P(x_0,y_0)
易知 AB 所在直線為 l_1:y=\dfrac{y_0}{x_0-2}(x-2)
x=0 ,得 y_M=\dfrac{-2y_0}{x_0-2}
\therefore |BM|=\left|1+\dfrac{2y_0}{x_0-2}\right|
同理知 x_N=\dfrac{-x_0}{y_0-1}
\therefore |AN|=\left|2+\dfrac{x_0}{y_0-1}\right|

\begin{aligned} &|AN|\cdot|BM|\\ =&\left|2+\dfrac{x_0}{y_0-1}\right|\cdot\left|1+\dfrac{2y_0}{x_0-2}\right|\\ =&\left|\dfrac{x_0+2y_0-2}{y_0-1}\cdot\dfrac{x_0+2y_0-2}{x_0-2}\right|\\ =&\left|\dfrac{x_0^2+4y^2+4x_0y_0-4x_0-8y_0+4}{x_0y_0-x_0-2y_0+2}\right| \end{aligned}
\dfrac{x_0^2}{4}+y_0^2=1 帶入上式得
|AN|\cdot|BM|=4

Sol2:

取特殊點 P(0,-1)
易得 N(0,0),M(0,-1)\Rightarrow|AN|=2,\,|BM|=2
\therefore |AN|\cdot|BM|=4


例5

橢圓方程 \dfrac{x^2}{4}+y^2=1,\,A(2,0),\,B(0,1),設(shè) P 是第三象限內(nèi)一點且在橢圓 C 上,直線 PAy 軸交于點 M,直線 PBx 軸交于點 N,求證:四邊形 ABNM 的面積為定值.

Sol:

由幾何關(guān)系易知四邊形 ABNM 的面積為 S=\dfrac{1}{2}|AN|\cdot|BM|=2


例6

已知拋物線 x^2=4y 的焦點為 F,\,A,\,B 是拋物線上的兩個動點,且 \overrightarrow{AF}=\lambda\overrightarrow{FB}\;(\lambda>0) 過點 A、B 分別作拋物線的切線,設(shè)交點為 M,證明 \overrightarrow{FM}\cdot\overrightarrow{AB} 為定值.

Sol:

由題目知 F(0,1),設(shè) A(x_1,y_1)、B(x_2,y_2)
\overrightarrow{AF}=\lambda\overrightarrow{FB}\;(\lambda>0)(-x_1,1-y_1)=\lambda(x_2,y_2-1)
\therefore\begin{cases} -x_1=\lambda x_2\\ 1-y_1=\lambda(y_2-1)\\ \end{cases}

-x_1=\lambda x_2\Rightarrow x_1^2=\lambda^2x_2^2
x_1^2=4y_1,\,x_2^2=4y_2
帶入得 y_1=\lambda^2y_2

聯(lián)立 \begin{cases} 1-y_1=\lambda(y_2-1)\\ y_1=\lambda^2 y_2 \end{cases} \Rightarrow \begin{cases} y_1=\lambda\\ y_2=\dfrac{1}{\lambda} \end{cases}

x_1x_2=-\lambda x_2^2=-4\lambda y_2=-4
過拋物線 A、B 兩點的切線分別是
y=\dfrac{1}{2}x_1(x-x_1)+y_1,\,y=\dfrac{1}{2}x_2(x-x_2)+y_2
化簡得 y=\dfrac{1}{2}x_1x-\dfrac{1}{4}x_1^2,\,y=\dfrac{1}{2}x_2x-\dfrac{1}{4}x_2^2

解得兩條切線的交點 M 的坐標為 M\left(\dfrac{x_1+x_2}{2},\dfrac{x_1x_2}{4}\right)=\left(\dfrac{x_1+x_2}{2},-1\right)

所以
\begin{aligned} &\overrightarrow{FM}\cdot\overrightarrow{AB}\\ =&\left(\dfrac{x_1+x_2}{2},-2\right)\cdot(x_2-x_1,y_2-y_1)\\ =&\dfrac{1}{2}(x_2^2-x_1^2)-2(\dfrac{1}{4}x_2^2-\dfrac{1}{4}x_1^2)\\ =&0 \end{aligned}


最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,461評論 6 532
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,538評論 3 417
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 176,423評論 0 375
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,991評論 1 312
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,761評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,207評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,268評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,419評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,959評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 40,782評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,983評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,528評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,222評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,653評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,901評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,678評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,978評論 2 374