使用 edgerTMM 算法對 bw 文件的均一化并且根據(jù) bigwig 文件和候選區(qū)域 bed 文件用 R 繪制熱圖

鏈接來源

一切版權(quán)來源參考鏈接:此處只是用來記錄和不能出去的情況。

涉及腳本

#### A minimal example on how to use EnrichedHeatmap together with rtracklayer:

require(EnrichedHeatmap)
require(rtracklayer)
require(circlize)
require(data.table)

## We start from a BED file with coordinates and load as GRanges:
tmp.targets <- makeGRangesFromDataFrame(
  df = fread("~/your.bed", header = F),
  seqnames.field = "V1", start.field = "V2", end.field = "V3")

## Say we want to take the peak center and extend it by 5kb in each direction:
tmp.extension <- 5000

## Extend center of the peaks by tmp.extension in each direction:
tmp.targets_extended <- resize(tmp.targets, fix = "center", width = tmp.extension*2)

## Now load the content of the bigwig limited to the regions we are interested in.
## This is much quicker than loading the entire bigwig and does not consume so much memory:
tmp.bigwig <- rtracklayer::import("~/your.bigwig" , 
                                  format = "BigWig", 
                                  selection = BigWigSelection(tmp.targets_extended))
    
## create the normalizedMatrix that EnrichedHeatmap accepts as input.
## We use the tmp.targets center (width=1) because from what I understand normalizeMatrix
## does not allow to turn off its extend= option. Therefore we trick it by simply
## providing the peak centers and then let the function extend it by our predefined window size.
normMatrix <- normalizeToMatrix(signal = tmp.bigwig, 
                                target = resize(tmp.targets, fix = "center", width = 1), 
                                background = 0, 
                                keep = c(0, 0.99),      ## minimal value to the 99th percentile
                                target_ratio = 0,
                                mean_mode = "w0",       ## see ?EnrichedHeatmap on other options
                                value_column = "score", ## = the name of the 4th column of the bigwig
                                extend = tmp.extension)

## a color gradient that I personally find visually appealing, which will cover
## the range from the lowest value of normMatrix to the 99th percentile
## (99th perc. avoids extreme values skewing the heatmap):
col_fun = circlize::colorRamp2(quantile(normMatrix, c(0, .99)), c("darkblue", "darkgoldenrod1"))

## heatmap function:
enrHtmp <- EnrichedHeatmap( mat = normMatrix, 
                            pos_line = FALSE, ## no dashed lines around the start
                            border = FALSE,   ## no box around heatmap
                            col = col_fun,    ## color gradients from above
                            column_title = "Nice Heatmap", ## column title 
                            column_title_gp = gpar(fontsize = 15, fontfamily = "sans"),
                            ## these three options produce a high-quality pdf
                            ## while keeping the file size small so that it easily fits
                            ## nto any powerpoint presentation without crashing it
                            use_raster = TRUE, raster_quality = 10, raster_device = "png",
                            ## turn off background colors
                            rect_gp = gpar(col = "transparent"), 
                            ## legend:
                            heatmap_legend_param = list(
                              legend_direction = "horizontal", ## legend horizontal
                              title = "legend_title"),
                            ## options for the profile plot on top
                            top_annotation = HeatmapAnnotation(
                              enriched = anno_enriched(
                                gp = gpar(col = "black", lty = 1, lwd=2),
                                col="black")
                            )
) ## end of EnrichedHeatmap function
    
## Instead of plotting to the Rstudio device save as pdf,
## with width-2 and height-6 I personally find the heatmap visually most appealing,
## it looks good while not being too "fat":
pdf("~/EnrichedHeatmap.pdf", width = 2, height = 6)

## Plot it:
draw(enrHtmp,                            ## plot the heatmap from above 
     heatmap_legend_side = "bottom",     ## we want the legend below the heatmap
     annotation_legend_side = "bottom",  ## 
     padding = unit(c(4, 4, 4, 4), "mm") ## some padding to avoid labels beyond plot borders
    )

dev.off() ## close the pdf
https://twitter.com/ATpoint90/status/1162065802826342407
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,578評論 6 544
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,701評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,691評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,974評論 1 318
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,694評論 6 413
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 56,026評論 1 329
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,015評論 3 450
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 43,193評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,719評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 41,442評論 3 360
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,668評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,151評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,846評論 3 351
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,255評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,592評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,394評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,635評論 2 380

推薦閱讀更多精彩內(nèi)容