TensorFlow HOWTO 1.3 邏輯回歸

1.3 邏輯回歸

將線性回歸的模型改一改,就可以用于二分類。邏輯回歸擬合樣本屬于某個分類,也就是樣本為正樣本的概率。

操作步驟

導入所需的包。

import tensorflow as tf
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import sklearn.model_selection as ms

導入數據,并進行預處理。我們使用鳶尾花數據集所有樣本,根據萼片長度和花瓣長度預測樣本是不是山鳶尾(第一種)。

iris = ds.load_iris()

x_ = iris.data[:, [0, 2]]
y_ = (iris.target == 0).astype(int)
y_ = np.expand_dims(y_ , 1)

x_train, x_test, y_train, y_test = \
    ms.train_test_split(x_, y_, train_size=0.7, test_size=0.3)

定義超參數。

變量 含義
n_input 樣本特征數
n_epoch 迭代數
lr 學習率
threshold 如果輸出超過這個概率,將樣本判定為正樣本
n_input = 2
n_epoch = 2000
lr = 0.05
threshold = 0.5

搭建模型。

變量 含義
x 輸入
y 真實標簽
w 權重
b 偏置
z 中間變量,x的線性變換
a 輸出,也就是樣本是正樣本的概率
x = tf.placeholder(tf.float64, [None, n_input])
y = tf.placeholder(tf.float64, [None, 1])
w = tf.Variable(np.random.rand(n_input, 1))
b = tf.Variable(np.random.rand(1, 1))
z = x @ w + b
a = tf.sigmoid(z)

定義損失、優化操作、和準確率度量指標。分類問題有很多指標,這里只展示一種。

我們使用交叉熵損失函數,如下。

-mean(Y \otimes \log(A) + (1-Y) \otimes \log(1-A))

它的意思是,對于正樣本,y 為 1,損失變為-log(a),輸出會盡可能接近一。對于負樣本,y為 0,損失變為-log(1 - a),輸出會盡可能接近零??傊?,它使輸出盡可能接近真實標簽。

變量 含義
loss 損失
op 優化操作
y_hat 標簽的預測值
acc 準確率
loss = - tf.reduce_mean(y * tf.log(a) + (1 - y) * tf.log(1 - a))
op = tf.train.AdamOptimizer(lr).minimize(loss)

y_hat = tf.to_double(a > threshold)
acc = tf.reduce_mean(tf.to_double(tf.equal(y_hat, y)))

使用訓練集訓練模型。

losses = []
accs = []

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver(max_to_keep=1)
    
    for e in range(n_epoch):
        _, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})
        losses.append(loss_)

使用測試集計算準確率。

        acc_ = sess.run(acc, feed_dict={x: x_test, y: y_test})
        accs.append(acc_)

每一百步打印損失和度量值。

        if e % 100 == 0:
            print(f'epoch: {e}, loss: {loss_}, acc: {acc_}')
            saver.save(sess,'logit/logit', global_step=e)

得到決策邊界:

    x_plt = x_[:, 0]
    y_plt = x_[:, 1]
    c_plt = y_.ravel()
    x_min = x_plt.min() - 1
    x_max = x_plt.max() + 1
    y_min = y_plt.min() - 1
    y_max = y_plt.max() + 1
    x_rng = np.arange(x_min, x_max, 0.05)
    y_rng = np.arange(y_min, y_max, 0.05)
    x_rng, y_rng = np.meshgrid(x_rng, y_rng)
    model_input = np.asarray([x_rng.ravel(), y_rng.ravel()]).T
    model_output = sess.run(y_hat, feed_dict={x: model_input}).astype(int)
    c_rng = model_output.reshape(x_rng.shape)

輸出:

epoch: 0, loss: 3.935746371309244, acc: 0.3333333333333333
epoch: 100, loss: 0.1969325408656252, acc: 1.0
epoch: 200, loss: 0.08548362243852041, acc: 1.0
epoch: 300, loss: 0.050833687966014396, acc: 1.0
epoch: 400, loss: 0.034929315249291375, acc: 1.0
epoch: 500, loss: 0.026013692651528184, acc: 1.0
epoch: 600, loss: 0.02038864243607467, acc: 1.0
epoch: 700, loss: 0.016552042129938136, acc: 1.0
epoch: 800, loss: 0.013786692432697542, acc: 1.0
epoch: 900, loss: 0.011709709551073783, acc: 1.0
epoch: 1000, loss: 0.010099234422592073, acc: 1.0
epoch: 1100, loss: 0.008818382202721829, acc: 1.0
epoch: 1200, loss: 0.007778392815694136, acc: 1.0
epoch: 1300, loss: 0.0069193419951217704, acc: 1.0
epoch: 1400, loss: 0.0061993983430654875, acc: 1.0
epoch: 1500, loss: 0.00558852696047961, acc: 1.0
epoch: 1600, loss: 0.005064638072189167, acc: 1.0
epoch: 1700, loss: 0.00461114435393481, acc: 1.0
epoch: 1800, loss: 0.004215362417896155, acc: 1.0
epoch: 1900, loss: 0.003867437954560204, acc: 1.0

繪制整個數據集以及決策邊界。

plt.figure()
cmap = mpl.colors.ListedColormap(['r', 'b'])
plt.scatter(x_plt, y_plt, c=c_plt, cmap=cmap)
plt.contourf(x_rng, y_rng, c_rng, alpha=0.2, linewidth=5, cmap=cmap)
plt.title('Data and Model')
plt.xlabel('Petal Length (cm)')
plt.ylabel('Sepal Length (cm)')
plt.show()

https://github.com/wizardforcel/how2tf/raw/master/img/1-3-1.png

繪制訓練集上的損失。

plt.figure()
plt.plot(losses)
plt.title('Loss on Training Set')
plt.xlabel('#epoch')
plt.ylabel('Cross Entropy')
plt.show()

https://github.com/wizardforcel/how2tf/raw/master/img/1-3-2.png

繪制測試集上的準確率。

plt.figure()
plt.plot(accs)
plt.title('Accurary on Testing Set')
plt.xlabel('#epoch')
plt.ylabel('Accurary')
plt.show()

https://github.com/wizardforcel/how2tf/raw/master/img/1-3-3.png

擴展閱讀

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,825評論 6 546
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,814評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 178,980評論 0 384
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 64,064評論 1 319
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,779評論 6 414
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,109評論 1 330
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,099評論 3 450
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,287評論 0 291
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,799評論 1 338
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,515評論 3 361
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,750評論 1 375
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,221評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,933評論 3 351
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,327評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,667評論 1 296
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,492評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,703評論 2 380

推薦閱讀更多精彩內容