分類與回歸的區別
-分類:分類就是確定該目標屬于哪一類,KNN用于分類就是判斷該目標屬于哪一類
-回歸:回歸就是預測結果(例如一個數字),KNN用于回歸就是推測該目標具體的值是多少,例如一個目標的5個鄰居的值是1,2,3,4,5,那么該目標應該是3.
超參數的選擇
- K的值的選取影響準確率
- KNN距離的公式,影響準確率(L1:曼哈頓距離,L2:歐拉距離, 余弦距離)
- 不同算法的選擇,KNN?K-MEANS?也是一個超參數
什么是K-NN算法
簡單來說,K-NN可以看成:有那么一堆你已經知道分類的數據,然后當一個新數據進入的時候,就開始跟訓練數據里的每個點求距離,然后挑離這個訓練數據最近的K個點看看這幾個點屬于什么類型,然后用少數服從多數的原則,給新數據歸類。
K-NN算法步驟
step.1---初始化距離為最大值
step.2---計算未知樣本和每個訓練樣本的距離dist
step.3---得到目前K個最臨近樣本中的最大距離maxdist
step.4---如果dist小于maxdist,則將該訓練樣本作為K-最近鄰樣本
step.5---重復步驟2、3、4,直到未知樣本和所有訓練樣本的距離都算完
step.6---統計K-最近鄰樣本中每個類標號出現的次數
step.7---選擇出現頻率最大的類標號作為未知樣本的類標號
K-NN算法局限
如右圖所示,有兩類不同的樣本數據,分別用藍色的小正方形和紅色的小三角形表示,而圖正中間的那個綠色的圓所標示的數據則是待分類的數據。也就是說,現在, 我們不知道中間那個綠色的數據是從屬于哪一類(藍色小正方形or紅色小三角形),下面,我們就要解決這個問題:給這個綠色的圓分類?! ∥覀兂Uf,物以類聚,人以群分,判別一個人是一個什么樣品質特征的人,常常可以從他/她身邊的朋友入手,所謂觀其友,而識其人。我們不是要判別上圖中那個綠色的圓是屬于哪一類數據么,好說,從它的鄰居下手。但一次性看多少個鄰居呢?從上圖中,你還能看到:
如果K=3,綠色圓點的最近的3個鄰居是2個紅色小三角形和1個藍色小正方形,少數從屬于多數,基于統計的方法,判定綠色的這個待分類點屬于紅色的三角形一類。
如果K=5,綠色圓點的最近的5個鄰居是2個紅色三角形和3個藍色的正方形,還是少數從屬于多數,基于統計的方法,判定綠色的這個待分類點屬于藍色的正方形一類。
于此我們看到,當無法判定當前待分類點是從屬于已知分類中的哪一類時,我們可以依據統計學的理論看它所處的位置特征,衡量它周圍鄰居的權重,而把它歸為(或分配)到權重更大的那一類。這就是K近鄰算法的核心思想。
K-NN算法復雜度
KNN 算法本身簡單有效,它是一種 lazy-learning 算法,分類器不需要使用訓練集進行訓練,訓練時間復雜度為0。KNN 分類的計算復雜度和訓練集中的文檔數目成正比,也就是說,如果訓練集中文檔總數為 n,那么 KNN 的分類時間復雜度為O(n)。
K-NN用于回歸
KNN算法不僅可以用于分類,還可以用于回歸。通過找出一個樣本的k個最近鄰居,將這些鄰居的屬性的平均值賦給該樣本,就可以得到該樣本的屬性。更有用的方法是將不同距離的鄰居對該樣本產生的影響給予不同的權值,如權值與距離成反比。該算法在分類時有個主要的不足是,當樣本不平衡時,如一個類的樣本容量很大,而其他類樣本容量很小時,有可能導致當輸入一個新樣本時,該樣本的K個鄰居中大容量類的樣本占多數。 該算法只計算“最近的”鄰居樣本,某一類的樣本數量很大,那么或者這類樣本并不接近目標樣本,或者這類樣本很靠近目標樣本。無論怎樣,數量并不能影響運行結果。可以采用權值的方法(和該樣本距離小的鄰居權值大)來改進。
K-NN代碼實現
function target=KNN(in,out,test,k)
% in: training samples data,nd matrix
% out: training samples' class label,n1
% test: testing data
% target: class label given by knn
% k: the number of neighbors
ClassLabel=unique(out);
c=length(ClassLabel);
n=size(in,1);
% target=zeros(size(test,1),1);
dist=zeros(size(in,1),1);
for j=1:size(test,1)
cnt=zeros(c,1);
for i=1:n
dist(i)=norm(in(i,:)-test(j,:));
end
[d,index]=sort(dist);
for i=1:k
ind=find(ClassLabel==out(index(i)));
cnt(ind)=cnt(ind)+1;
end
[m,ind]=max(cnt);
target(j)=ClassLabel(ind);
end