ML:DT

決策樹的一個小例子:

# -*- coding:utf-8 -*-

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn import metrics
from sklearn.ensemble import ExtraTreesClassifier

def iris_type(s):
    it = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
    return it[s]

if __name__ == "__main__":
    # 讀取數(shù)據(jù)
    path = u"4.iris.data"
    data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})
    X = data[:,:2]
    y = data[:,4]

    # 數(shù)算法通過計(jì)算特征的信息量,查看重要性
    import_test_data = data[:,:4]
    model = ExtraTreesClassifier()
    model.fit(import_test_data, y)
    print model.feature_importances_

    # 訓(xùn)練分類器
    clf = DecisionTreeClassifier(criterion='entropy', max_depth=20)
    dt_clf = clf.fit(X,y)

    # 保存
    f = open("iris_tree.dot", 'w')
    tree.export_graphviz(dt_clf, out_file=f)

    # 數(shù)據(jù)可視化
    M, N = 500, 500
    x1_min, x1_max = np.min(X[:,0]), np.max(X[:,0])
    x2_min, x2_max = np.min(X[:,1]), np.max(X[:,1])
    t1 = np.linspace(x1_min, x1_max, M)
    t2 = np.linspace(x2_min, x2_max, N)
    x1, x2 = np.meshgrid(t1, t2)  #生成網(wǎng)格采樣點(diǎn)
    x_test = np.stack((x1.ravel(),x2.flat),axis=1)
    y_hat = clf.predict(x_test)
    y_hat = y_hat.reshape(x1.shape)
    plt.pcolormesh(x1, x2, y_hat, cmap=plt.cm.summer, alpha=0.3)    # 預(yù)測值的顯示Paired/Spectral/coolwarm/summer/spring/OrRd/Oranges
    plt.scatter(X[:,0], X[:,1], c=y, s=50, edgecolors='k', cmap=plt.cm.prism)    # 樣本的顯示
    plt.xlim(x1_min, x1_max)
    plt.ylim(x2_min, x2_max)
    plt.grid()
    plt.show()


    # 預(yù)測評估
    predict = clf.predict(X)
    accuracy = metrics.accuracy_score(y, predict)
    print "Accuracy: %.2f%%" %(100 * accuracy)


    report = metrics.classification_report(y, predict)
    print report

    result = (predict == y)  # True則預(yù)測正確,F(xiàn)alse則預(yù)測錯誤
    print result
    c = np.count_nonzero(result)  # 統(tǒng)計(jì)預(yù)測正確的個數(shù)
    print c
    print 'Accuracy: %.2f%%' % (100 * float(c) / float(len(result)))

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,321評論 6 543
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,559評論 3 429
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,442評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,835評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 72,581評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,922評論 1 328
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,931評論 3 447
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 43,096評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,639評論 1 336
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 41,374評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,591評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,104評論 5 364
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,789評論 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,196評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,524評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,322評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 48,554評論 2 379

推薦閱讀更多精彩內(nèi)容

  • 翻譯自analyticsvidhya 基于樹的學(xué)習(xí)算法被認(rèn)為是最好的和最常用的監(jiān)督學(xué)習(xí)(supervised le...
    珞珈村下山閱讀 6,069評論 1 19
  • 萊利:球員來了又走,球隊(duì)繼續(xù)前進(jìn) 摘要:萊利在休賽期應(yīng)魔術(shù)師邀請去歐洲度假。 虎撲體育9月8日訊 萊利最近接受采訪...
    prudenceli閱讀 258評論 0 0
  • 中距離賽跑 1940年1月3日,未名谷,龍山,中國河南 “我們往這荒山里走了有多遠(yuǎn)了?”永忠問道。 “很難說,我...
    作家亞山閱讀 367評論 0 0
  • 這篇文章本應(yīng)該寫在去年,我工作滿十周年的日子。但是越在乎越寫不出來,所以寧愿一直寫到自己合意。 在時間長河中,區(qū)區(qū)...
    模模的世界閱讀 487評論 4 0
  • 當(dāng)絢麗的天空中浮云飄動時 我在想 是涼意颼颼的風(fēng)兒吹散了云朵 還是一往情深的云朵追隨著風(fēng)兒 抑或只是 亙古不變的自...
    曇宓閱讀 432評論 0 0