求一個(gè)數(shù)列的逆序數(shù)
逆序?qū)Γ簲?shù)列a[1],a[2],a[3]…中的任意兩個(gè)數(shù)a[i],a[j] (i<j),如果a[i]>a[j],那么我們就說(shuō)這兩個(gè)數(shù)構(gòu)成了一個(gè)逆序?qū)?/p>
逆序數(shù):一個(gè)數(shù)列中逆序?qū)Φ目倲?shù)
如:數(shù)列[3 5 4 8 2 6 9] (3,2),(5,2),(4,2),(5,4)等等都是一個(gè)逆序?qū)?設(shè)計(jì)一個(gè)程序求得一個(gè)數(shù)列的逆序數(shù)。(要求時(shí)間復(fù)雜度為O(nlogn))
主要思路
1、想到時(shí)間復(fù)雜度為O(nlogn),因此不能按照傳統(tǒng)方法“一對(duì)一”進(jìn)行查找
2、O(nlogn)的時(shí)間復(fù)雜度可以采用歸并排序進(jìn)行協(xié)助查找
3、對(duì)于序列a1中的某個(gè)數(shù)a1[i],序列a2中的某個(gè)數(shù)a2[j],如果a1[i]<a2[j],沒有逆序數(shù),如果a1[i]>a2[j],那么逆序數(shù)為a1中a1[i]后邊元素的個(gè)數(shù)(包括a1[i]),即length1-i+1(下面代碼中l(wèi)ength1的值等于mid)
4、累加遞歸過(guò)程中的所有逆序數(shù)
主要代碼
void Merge( int *a, int *b, int left, int right)
//合并 a[ left:(left+right)/2 ] 和 a[ (left+right)/2+1:right ] 到 b[ left:right ]
{
int i = left, m = (left+right)/2, k = left, j = m + 1;
while( (i <= m) && (j <= right) )
if( a[ i ] <= a[ j ]) b[ k++ ] = a[ i++ ];
else {
b[ k++ ] = a[ j++ ];
count+=m-i+1; //關(guān)鍵代碼,歸并算法加此代碼可求逆序數(shù)。
}
if ( i>m )
for( int q=j; q<=right; q++ ) b[ k++ ] = a[ q ];
else
for( int q=i; q<=m; q++) b[ k++ ] = a[ q ];
}//將元素進(jìn)行排序并將排序后的元素合并到數(shù)組b中,其中求出逆序數(shù)
//分治法解決問(wèn)題
void MS (int *a, int left, int right) {
int b[99];
if (left == right) return ;
int mid = (left + right)/2;
MS (a, left, mid);//對(duì)左邊進(jìn)行排序(分)
MS (a, mid+1, right);//對(duì)右邊進(jìn)行排序(分)
Merge (a, b, left, right);//(治, 并)
copy (a, b, left, right);//將數(shù)組b的元素復(fù)制到數(shù)組a中
}
ps:count+=m-i+1; //關(guān)鍵代碼,歸并算法加此代碼可求逆序數(shù)。
完整代碼
#include <iostream>
#include <cstdio>
#include <string>
using namespace std;
int count = 0;
/*
void MG (int *a, int *b, int left, int right) {
int i, j, m, k = left;
i = left;
m = (left+right)/2;
j = m + 1;
while ((i<=m)&& (j<=right)) {
if (a[i] <= a[j]) {
b[k] = a[i];
i++; k++;
}
else {
b[k] = a[j];
j++; k++;
}
}
if (i>m) {
while (j<=right) {
b[k] = a[j];
k++; j++;
}
}
else {
while (i<=m) {
b[k] = a[i];
k++; i++;
}
}
}
*/
void Merge( int *a, int *b, int left, int right)
//合并 a[ left:(left+right)/2 ] 和 a[ (left+right)/2+1:right ] 到 b[ left:right ]
{
int i = left, m = (left+right)/2, k = left, j = m + 1;
while( (i <= m) && (j <= right) )
if( a[ i ] <= a[ j ]) b[ k++ ] = a[ i++ ];
else {
b[ k++ ] = a[ j++ ];
count+=m-i+1; //關(guān)鍵代碼,歸并算法加此代碼可求逆序數(shù)。
}
if ( i>m )
for( int q=j; q<=right; q++ ) b[ k++ ] = a[ q ];
else
for( int q=i; q<=m; q++) b[ k++ ] = a[ q ];
}
void copy (int *a, int *b, int left, int right) {
while (left <= right) {
a[left] = b[left];
left ++;
}
}
void MS (int *a, int left, int right) {
int b[99];
if (left == right) return ;
int mid = (left + right)/2;
MS (a, left, mid);
MS (a, mid+1, right);
//MG (a, b, left, right);
Merge (a, b, left, right);
copy (a, b, left, right);
}
int main(int argc, char const *argv[])
{
int n, left, right;
int a[99];
cin >> n;
for (int i=0; i<n; i++)
cin >> a[i];
left = 0; right = n-1;
MS (a, left, right);
cout << count;
return 0;
}
Example
4
4 3 2 1 enter
輸出結(jié)果:
6