ggplot2配色神器:ggsci

1. ggsci介紹

ggsci提供了一系列配置好的顏色給ggplot2繪制出的圖片調色,包括一些知名雜志期刊或者軟件甚至是知名科幻電影、動畫等的經典配色風格。將這些配色風格直接應用于我們繪制出的圖,方便又好看。

# 下載
# download ggsci package
install.packages("ggsci")

#install.packages("devtools")
devtools::install_github("nanxstats/ggsci")

對所有的調色板,使用方法:p+scale_color_xx()p+scale_fill_xx()
p是繪制好的ggplot圖,xx指調色板的名字
所有調色板的名字:npg, aaas, nejm, lancet, jama, jco, ucscgb, d3, locuszoom, igv, cosmic, uchicago, startrek, tron, futurama, rickandmorty, simpsons, gsea, material

2. ggsci使用

2.1 離散型調色板,應用于離散型數值

使用diamond數據集做演示,先使用diamond數據集繪制兩張圖

library("ggsci")
library("ggplot2")
library("gridExtra")
library("patchwork")

data("diamonds")
p1 <- ggplot(subset(diamonds, carat >= 2.2),
  aes(x = table, y = price, colour = cut)
) + geom_point(alpha = 0.7) +
  geom_smooth(method = "loess", alpha = 0.05, size = 1, span = 1) +
  theme_bw()
p2 <- ggplot(subset(diamonds, carat > 2.2 & depth > 55 & depth < 70),aes(x = depth, fill = cut)
) +geom_histogram(colour = "black", binwidth = 1, position = "dodge") +theme_bw()
p1|p2
  • NPG(將NPG雜志的配色風格應用到剛剛繪制的兩張圖)
p1_npg <- p1 + scale_color_npg()
p2_npg <- p2 + scale_fill_npg()
grid.arrange(p1_npg, p2_npg, ncol = 2)

顏色提取

show_col(pal_npg("nrc", alpha = 0.6)(10))
##上面palette=c('nrc),所以取顏色時pal_npg()第一個參數就是‘nrc’。如果是‘Default’就填‘Default’,其它的函數都是一樣的取法。
  • AAAS(使用AAAS雜志的配色風格)
p1_aaas <- p1 + scale_color_aaas()
p2_aaas <- p2 + scale_fill_aaas()
grid.arrange(p1_aaas, p2_aaas, ncol = 2)
  • NEJM(新英格蘭配色風格)
p1_nejm <- p1 + scale_color_nejm()
p2_nejm <- p2 + scale_fill_nejm()
grid.arrange(p1_nejm, p2_nejm, ncol = 2)
  • Lancet
p1_lancet <- p1 + scale_color_lancet()
p2_lancet <- p2 + scale_fill_lancet()
grid.arrange(p1_lancet, p2_lancet, ncol = 2)
  • JAMA
p1_jama <- p1 + scale_color_jama()
p2_jama <- p2 + scale_fill_jama()
grid.arrange(p1_jama, p2_jama, ncol = 2)
  • JCO
p1_jco <- p1 + scale_color_jco()
p2_jco <- p2 + scale_fill_jco()
grid.arrange(p1_jco, p2_jco, ncol = 2)
  • UCSCGB
p1_ucscgb <- p1 + scale_color_ucscgb()
p2_ucscgb <- p2 + scale_fill_ucscgb()
grid.arrange(p1_ucscgb, p2_ucscgb, ncol = 2)
  • D3
p1_d3 <- p1 + scale_color_d3()
p2_d3 <- p2 + scale_fill_d3()
grid.arrange(p1_d3, p2_d3, ncol = 2)
  • LocusZoom
p1_locuszoom <- p1 + scale_color_locuszoom()
p2_locuszoom <- p2 + scale_fill_locuszoom()
grid.arrange(p1_locuszoom, p2_locuszoom, ncol = 2)
  • IGV
p1_igv_default <- p1 + scale_color_igv()
p2_igv_default <- p2 + scale_fill_igv()
grid.arrange(p1_igv_default, p2_igv_default, ncol = 2)
  • UChicago
p1_uchicago <- p1 + scale_color_uchicago()
p2_uchicago <- p2 + scale_fill_uchicago()
grid.arrange(p1_uchicago, p2_uchicago, ncol = 2)
  • Star Trek
p1_startrek <- p1 + scale_color_startrek()
p2_startrek <- p2 + scale_fill_startrek()
grid.arrange(p1_startrek, p2_startrek, ncol = 2)
  • Tron Legend
p1_tron <- p1 + theme_dark() + theme(
  panel.background = element_rect(fill = "#2D2D2D"),
  legend.key = element_rect(fill = "#2D2D2D")
) +
  scale_color_tron()
p2_tron <- p2 + theme_dark() + theme(
  panel.background = element_rect(fill = "#2D2D2D")
) +
  scale_fill_tron()
grid.arrange(p1_tron, p2_tron, ncol = 2)
  • Futurama
p1_futurama <- p1 + scale_color_futurama()
p2_futurama <- p2 + scale_fill_futurama()
grid.arrange(p1_futurama, p2_futurama, ncol = 2)
  • Rick and Morty(我非常喜歡的動漫)
p1_rickandmorty <- p1 + scale_color_rickandmorty()
p2_rickandmorty <- p2 + scale_fill_rickandmorty()
grid.arrange(p1_rickandmorty, p2_rickandmorty, ncol = 2)
  • The Simpsons
p1_simpsons <- p1 + scale_color_simpsons()
p2_simpsons <- p2 + scale_fill_simpsons()
grid.arrange(p1_simpsons, p2_simpsons, ncol = 2)
2.2 連續型調色板

使用mtcars數據集做演示

library("reshape2")

data("mtcars")
cor <- cor(unname(cbind(mtcars, mtcars, mtcars, mtcars)))
cor_melt <- melt(cor)

p3 <- ggplot(
  cor_melt,
  aes(x = Var1, y = Var2, fill = value)
) +
  geom_tile(colour = "black", size = 0.3) +
  theme_bw() +
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank()
  )
  • GSEA
    將GSEA的配色風格應用到剛剛繪制的圖
p3_gsea <- p3 + scale_fill_gsea()
p3_gsea_inv <- p3 + scale_fill_gsea(reverse = TRUE)
grid.arrange(p3_gsea, p3_gsea_inv, ncol = 2)

參考:https://nanx.me/ggsci/articles/ggsci.html

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
禁止轉載,如需轉載請通過簡信或評論聯系作者。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,237評論 6 537
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,957評論 3 423
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,248評論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,356評論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,081評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,485評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,534評論 3 444
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,720評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,263評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,025評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,204評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,787評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,461評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,874評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,105評論 1 289
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,945評論 3 395
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,205評論 2 375

推薦閱讀更多精彩內容