本文介紹了如何在Hive里新建一個外部分區表并加載數據
1.建表
# 使用數據庫
use blog;
# 創建外部分區表
create external table external_blog_record(
host string comment "主機",
app string comment "應用",
source string comment "來源",
remote_addr string comment "訪問IP",
time_iso6401 string comment "訪問時間",
http_host string comment "域名",
request_method string comment "請求方式",
request_url string comment "請求地址",
request_protocol string comment "請求協議",
request_time string comment "請求耗時",
status string comment "請求狀態",
body_byte_sents string comment "內容體大小",
upstream_addr string comment "轉發服務器地址",
upstream_response_time string comment "轉發響應耗時",
upstream_status string comment "轉發狀態",
http_referer string comment "來源地址",
http_user_agent string comment "瀏覽器類型",
res_type string comment "資源類型:首頁、文章、類別、其他"
)
comment "日志原始記錄外部分區表"
partitioned by (day string)
row format delimited fields terminated by '\t'
location '/log/blog';
新建一個名為external_blog_record的數據庫表并制定分區參數day,數據的格式用'\t'分隔,數據的目錄存放在HDFS的'/log/blog'目錄下。
2.查看分區
# 查看表分區
show partitions external_blog_record;
分區列表
可以看到目前表里面已經存在很多分區了,查看HDFS的目錄
hdfs中的分區
每個分區下對應存放這日志文件。
分區中的日志文件
3.新增分區
只需要在 /log/blog 下 新建day=XXX 即可,但是這樣新建的分區并沒有和Hive關聯起來,必須運行如下命令,使分區與Hive關聯起來。
msck repair table external_blog_record;
就可以用上面的查看分區的命令查看是否新建成功。
4.查詢分區下的記錄
hive> select count(*) from external_blog_record where day=20181122;
Query ID = hadoop_20181123144713_2b8b197a-c09b-4bf6-8ad3-b88cbd1ee4ca
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1542348923310_0146, Tracking URL = http://hadoop1:8088/proxy/application_1542348923310_0146/
Kill Command = /opt/soft/hadoop-2.7.3/bin/hadoop job -kill job_1542348923310_0146
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-11-23 14:47:25,697 Stage-1 map = 0%, reduce = 0%
2018-11-23 14:47:32,237 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.49 sec
2018-11-23 14:47:39,923 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 2.62 sec
MapReduce Total cumulative CPU time: 2 seconds 620 msec
Ended Job = job_1542348923310_0146
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 2.62 sec HDFS Read: 414396 HDFS Write: 5 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 620 msec
OK
1561
Time taken: 27.642 seconds, Fetched: 1 row(s)
5.附錄
利用MapperReduce來定時合并小文件并加載到Hive分區表里
/**
* 合并日志文件并加載到Hive分區表
*/
public class MergeSmallFileAndLoadIntoHive {
private static final Logger LOG = LoggerFactory.getLogger(MergeSmallFileAndLoadIntoHive.class);
static class SmallFileCombinerMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
NullWritable v = NullWritable.get();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
context.write(value, v);
}
}
public static void main(String[] args) throws Exception {
boolean test = false;
String logPath;
String patition;
if (test) {
patition = "day=20181114";
// Linux
logPath = "/log/blog";
// Windows
logPath = "D:" + File.separator + "hadoop" + File.separator + "blog";
} else {
if (args == null || args.length < 2) {
throw new RuntimeException("\"參數的長度不正確,參考:[java -jar xxxx.jar me.jinkun.mr.merge.MergeSmallFileAndLoadIntoHive /log/blog day=20181116]\"");
}
logPath = args[0];
patition = args[1];
}
String tempInPath = logPath + File.separator + "temp" + File.separator + patition + File.separator + "in";
String tempOutPath = logPath + File.separator + "temp" + File.separator + patition + File.separator + "out";
//權限問題
System.setProperty("HADOOP_USER_NAME", "hadoop");
Configuration conf = new Configuration();
if (!test) {
conf.set("fs.defaultFS", "hdfs://hadoop1:9000");
}
// 1.獲取當天臨時保存的日志
List<Path> paths = new ArrayList<>();
long currentTimeMillis = System.currentTimeMillis();
FileSystem fs = FileSystem.get(conf);
FileStatus[] fileStatuses = fs.listStatus(new Path(tempInPath));
for (FileStatus fileStatus : fileStatuses) {
if (fileStatus.isDirectory()) {
Path path = fileStatus.getPath();
String name = fileStatus.getPath().getName();
if (!name.startsWith("delete") &&
name.compareTo(String.valueOf(currentTimeMillis)) < 0) {
paths.add(path);
}
LOG.info("文件夾名為:" + name);
}
}
if (paths.size() == 0) {
LOG.info("暫無可以合并的文件夾!不提交JOB");
System.exit(0);
}
Job job = Job.getInstance(conf);
job.setJarByClass(MergeSmallFileAndLoadIntoHive.class);
job.setMapperClass(SmallFileCombinerMapper.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
// 2.合并小文件到臨時文件夾
job.setInputFormatClass(CombineTextInputFormat.class);
CombineTextInputFormat.setMaxInputSplitSize(job, 1024 * 1024 * 128);//128M
CombineTextInputFormat.setInputPaths(job, paths.toArray(new Path[paths.size()]));
Path tempResultPath = new Path(tempOutPath);
FileOutputFormat.setOutputPath(job, tempResultPath);
job.setNumReduceTasks(0);
boolean flag = job.waitForCompletion(true);
// 如果成功
if (flag) {
// 3.將合并后的文件移動到Hive的分區表
int index = 0;
FileStatus[] resultStatus = fs.listStatus(tempResultPath);
for (FileStatus fileStatus : resultStatus) {
Path path = fileStatus.getPath();
if (path.getName().startsWith("part")) {
fs.rename(path, new Path(logPath + File.separator + patition + File.separator + currentTimeMillis + "." + index + ".log"));
index++;
}
}
fs.delete(tempResultPath, true);
// 4.標記合并過的文件夾為已經刪除
for (Path path : paths) {
fs.rename(path, new Path(path.getParent(), "delete_" + path.getName()));
}
fs.close();
}
}
}
執行腳本
#!/bin/sh
day=`date '+%Y%m%d'`
echo "提交合并任務 $day"
nohup /opt/soft/hadoop-2.7.3/bin/hadoop jar /opt/soft-install/schedule/mapreduce-1.0.jar me.jinkun.mr.merge.MergeSmallFileAndLoadIntoHive /log/blog day=$day > nohup.log 2>&1 &