十道海量數據處理面試題與十個方法大總結

第一部分、十道海量數據處理面試題

1、海量日志數據,提取出某日訪問百度次數最多的那個IP。

首先是這一天,并且是訪問百度的日志中的IP取出來,逐個寫入到一個大文件中。注意到IP是32位的,最多有個2^32個IP。同樣可以采用映射的方法,比如模1000,把整個大文件映射為1000個小文件,再找出每個小文中出現頻率最大的IP(可以采用hash_map進行頻率統計,然后再找出頻率最大的幾個)及相應的頻率。然后再在這1000個最大的IP中,找出那個頻率最大的IP,即為所求。

或者如下闡述(雪域之鷹):

算法思想:分而治之+Hash

1.IP地址最多有2^32=4G種取值情況,所以不能完全加載到內存中處理;

2.可以考慮采用“分而治之”的思想,按照IP地址的Hash(IP)%1024值,把海量IP日志分別存儲到1024個小文件中。這樣,每個小文件最多包含4MB個IP地址;

3.對于每一個小文件,可以構建一個IP為key,出現次數為value的Hash map,同時記錄當前出現次數最多的那個IP地址;

4.可以得到1024個小文件中的出現次數最多的IP,再依據常規的排序算法得到總體上出現次數最多的IP;


2、搜索引擎會通過日志文件把用戶每次檢索使用的所有檢索串都記錄下來,每個查詢串的長度為1-255字節。

假設目前有一千萬個記錄(這些查詢串的重復度比較高,雖然總數是1千萬,但如果除去重復后,不超過3百萬個。一個查詢串的重復度越高,說明查詢它的用戶越多,也就是越熱門。),請你統計最熱門的10個查詢串,要求使用的內存不能超過1G。

典型的Top K算法,還是在這篇文章里頭有所闡述,詳情請參見:十一、從頭到尾徹底解析Hash表算法。

文中,給出的最終算法是:

第一步、先對這批海量數據預處理,在O(N)的時間內用Hash表完成統計(之前寫成了排序,特此訂正。July、2011.04.27);

第二步、借助堆這個數據結構,找出Top K,時間復雜度為N‘logK。

即,借助堆結構,我們可以在log量級的時間內查找和調整/移動。因此,維護一個K(該題目中是10)大小的小根堆,然后遍歷300萬的Query,分別和根元素進行對比所以,我們最終的時間復雜度是:O(N) + N'*O(logK),(N為1000萬,N’為300萬)。ok,更多,詳情,請參考原文。

或者:采用trie樹,關鍵字域存該查詢串出現的次數,沒有出現為0。最后用10個元素的最小推來對出現頻率進行排序。


3、有一個1G大小的一個文件,里面每一行是一個詞,詞的大小不超過16字節,內存限制大小是1M。返回頻數最高的100個詞。

方案:順序讀文件中,對于每個詞x,取hash(x)%5000,然后按照該值存到5000個小文件(記為x0,x1,...x4999)中。這樣每個文件大概是200k左右。

如果其中的有的文件超過了1M大小,還可以按照類似的方法繼續往下分,直到分解得到的小文件的大小都不超過1M。

對每個小文件,統計每個文件中出現的詞以及相應的頻率(可以采用trie樹/hash_map等),并取出出現頻率最大的100個詞(可以用含100個結點的最小堆),并把100個詞及相應的頻率存入文件,這樣又得到了5000個文件。下一步就是把這5000個文件進行歸并(類似與歸并排序)的過程了。


4、有10個文件,每個文件1G,每個文件的每一行存放的都是用戶的query,每個文件的query都可能重復。要求你按照query的頻度排序。

還是典型的TOP K算法,解決方案如下:

方案1:

順序讀取10個文件,按照hash(query)%10的結果將query寫入到另外10個文件(記為)中。這樣新生成的文件每個的大小大約也1G(假設hash函數是隨機的)。

找一臺內存在2G左右的機器,依次對用hash_map(query, query_count)來統計每個query出現的次數。利用快速/堆/歸并排序按照出現次數進行排序。將排序好的query和對應的query_cout輸出到文件中。這樣得到了10個排好序的文件(記為)。

對這10個文件進行歸并排序(內排序與外排序相結合)。

方案2:

一般query的總量是有限的,只是重復的次數比較多而已,可能對于所有的query,一次性就可以加入到內存了。這樣,我們就可以采用trie樹/hash_map等直接來統計每個query出現的次數,然后按出現次數做快速/堆/歸并排序就可以了。

方案3:

與方案1類似,但在做完hash,分成多個文件后,可以交給多個文件來處理,采用分布式的架構來處理(比如MapReduce),最后再進行合并。


5、 給定a、b兩個文件,各存放50億個url,每個url各占64字節,內存限制是4G,讓你找出a、b文件共同的url?

方案1:可以估計每個文件安的大小為5G×64=320G,遠遠大于內存限制的4G。所以不可能將其完全加載到內存中處理??紤]采取分而治之的方法。

遍歷文件a,對每個url求取hash(url)%1000,然后根據所取得的值將url分別存儲到1000個小文件(記為a0,a1,...,a999)中。這樣每個小文件的大約為300M。

遍歷文件b,采取和a相同的方式將url分別存儲到1000小文件(記為b0,b1,...,b999)。這樣處理后,所有可能相同的url都在對應的小文件(a0vsb0,a1vsb1,...,a999vsb999)中,不對應的小文件不可能有相同的url。然后我們只要求出1000對小文件中相同的url即可。

求每對小文件中相同的url時,可以把其中一個小文件的url存儲到hash_set中。然后遍歷另一個小文件的每個url,看其是否在剛才構建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允許有一定的錯誤率,可以使用Bloom filter,4G內存大概可以表示340億bit。將其中一個文件中的url使用Bloom filter映射為這340億bit,然后挨個讀取另外一個文件的url,檢查是否與Bloom filter,如果是,那么該url應該是共同的url(注意會有一定的錯誤率)。

Bloom filter日后會在本BLOG內詳細闡述。


6、在2.5億個整數中找出不重復的整數,注,內存不足以容納這2.5億個整數。

方案1:采用2-Bitmap(每個數分配2bit,00表示不存在,01表示出現一次,10表示多次,11無意義)進行,共需內存2^32 * 2 bit=1 GB內存,還可以接受。然后掃描這2.5億個整數,查看Bitmap中相對應位,如果是00變01,01變10,10保持不變。所描完事后,查看bitmap,把對應位是01的整數輸出即可。

方案2:也可采用與第1題類似的方法,進行劃分小文件的方法。然后在小文件中找出不重復的整數,并排序。然后再進行歸并,注意去除重復的元素。



致謝:http://www.cnblogs.com/youwang/


















http://blog.csdn.net/v_JULY_v/article/details/6279498 ?(超贊)

http://blog.csdn.net/v_JULY_v/article/details/6279498


最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,501評論 6 544
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,673評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 178,610評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,939評論 1 318
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,668評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,004評論 1 329
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,001評論 3 449
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,173評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,705評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,426評論 3 359
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,656評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,139評論 5 364
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,833評論 3 350
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,247評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,580評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,371評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,621評論 2 380

推薦閱讀更多精彩內容

  • 摘要:本文將向您講述諸多數據處理面試題以及方法的總結。 第一部分、十道海量數據處理面試題 1、海量日志數據,提取出...
    拾壹北閱讀 1,705評論 0 28
  • 教你如何迅速秒殺掉:99%的海量數據處理面試題 本文經過大量細致的優化后,收錄于我的新書《編程之法》第六章中,新書...
    Helen_Cat閱讀 7,448評論 1 39
  • 第一部分、十道海量數據處理面試題 1、海量日志數據,提取出某日訪問百度次數最多的那個IP。 此題,在我之前的一篇文...
    零一間閱讀 931評論 0 5
  • 給定a、b兩個文件,各存放50億個url,每個url各占64字節,內存限制是4G,讓你找出a、b文件共同的url?...
    大黃大黃大黃閱讀 2,119評論 2 8
  • 1、題目:每一個ip訪問百度,其ip地址都會被記錄到后臺日志文件中,假設一天的訪問日志有100G,求出一天中訪問百...
    山的那邊是什么_閱讀 2,063評論 0 4